Solve for n_1
\left\{\begin{matrix}n_{1}=\frac{n_{2}\sin(\theta _{2})}{\sin(\theta _{1})}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta _{1}=\pi n_{1}\\n_{1}\in \mathrm{R}\text{, }&\left(n_{2}=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{1}=\pi n_{1}\right)\text{ or }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{2}=\pi n_{1}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{1}=\pi n_{1}\right)\end{matrix}\right.
Solve for n_2
\left\{\begin{matrix}n_{2}=\frac{n_{1}\sin(\theta _{1})}{\sin(\theta _{2})}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta _{2}=\pi n_{1}\\n_{2}\in \mathrm{R}\text{, }&\left(n_{1}=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{2}=\pi n_{1}\right)\text{ or }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{1}=\pi n_{1}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta _{2}=\pi n_{1}\right)\end{matrix}\right.
Share
Copied to clipboard
\sin(\theta _{1})n_{1}=n_{2}\sin(\theta _{2})
The equation is in standard form.
\frac{\sin(\theta _{1})n_{1}}{\sin(\theta _{1})}=\frac{n_{2}\sin(\theta _{2})}{\sin(\theta _{1})}
Divide both sides by \sin(\theta _{1}).
n_{1}=\frac{n_{2}\sin(\theta _{2})}{\sin(\theta _{1})}
Dividing by \sin(\theta _{1}) undoes the multiplication by \sin(\theta _{1}).
n_{2}\sin(\theta _{2})=n_{1}\sin(\theta _{1})
Swap sides so that all variable terms are on the left hand side.
\sin(\theta _{2})n_{2}=n_{1}\sin(\theta _{1})
The equation is in standard form.
\frac{\sin(\theta _{2})n_{2}}{\sin(\theta _{2})}=\frac{n_{1}\sin(\theta _{1})}{\sin(\theta _{2})}
Divide both sides by \sin(\theta _{2}).
n_{2}=\frac{n_{1}\sin(\theta _{1})}{\sin(\theta _{2})}
Dividing by \sin(\theta _{2}) undoes the multiplication by \sin(\theta _{2}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}