Solve for n_3
n_{3}=\frac{2\left(5y+1\right)}{\left(y+1\right)^{2}}
y\neq -1
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{n_{3}+\sqrt{25-8n_{3}}-5}{n_{3}}\text{; }y=-\frac{n_{3}-\sqrt{25-8n_{3}}-5}{n_{3}}\text{, }&n_{3}\neq 0\\y=-\frac{1}{5}\text{, }&n_{3}=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{n_{3}+\sqrt{25-8n_{3}}-5}{n_{3}}\text{; }y=-\frac{n_{3}-\sqrt{25-8n_{3}}-5}{n_{3}}\text{, }&n_{3}\neq 0\text{ and }n_{3}\leq \frac{25}{8}\\y=-\frac{1}{5}\text{, }&n_{3}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
n_{3}\left(y^{2}+2y+1\right)-10\left(y+1\right)+8=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
n_{3}y^{2}+2n_{3}y+n_{3}-10\left(y+1\right)+8=0
Use the distributive property to multiply n_{3} by y^{2}+2y+1.
n_{3}y^{2}+2n_{3}y+n_{3}-10y-10+8=0
Use the distributive property to multiply -10 by y+1.
n_{3}y^{2}+2n_{3}y+n_{3}-10y-2=0
Add -10 and 8 to get -2.
n_{3}y^{2}+2n_{3}y+n_{3}-2=10y
Add 10y to both sides. Anything plus zero gives itself.
n_{3}y^{2}+2n_{3}y+n_{3}=10y+2
Add 2 to both sides.
\left(y^{2}+2y+1\right)n_{3}=10y+2
Combine all terms containing n_{3}.
\frac{\left(y^{2}+2y+1\right)n_{3}}{y^{2}+2y+1}=\frac{10y+2}{y^{2}+2y+1}
Divide both sides by y^{2}+2y+1.
n_{3}=\frac{10y+2}{y^{2}+2y+1}
Dividing by y^{2}+2y+1 undoes the multiplication by y^{2}+2y+1.
n_{3}=\frac{2\left(5y+1\right)}{\left(y+1\right)^{2}}
Divide 10y+2 by y^{2}+2y+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}