Solve for n
n=9
Share
Copied to clipboard
\left(n-6\right)^{2}=\left(\sqrt{2n-9}\right)^{2}
Square both sides of the equation.
n^{2}-12n+36=\left(\sqrt{2n-9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-6\right)^{2}.
n^{2}-12n+36=2n-9
Calculate \sqrt{2n-9} to the power of 2 and get 2n-9.
n^{2}-12n+36-2n=-9
Subtract 2n from both sides.
n^{2}-14n+36=-9
Combine -12n and -2n to get -14n.
n^{2}-14n+36+9=0
Add 9 to both sides.
n^{2}-14n+45=0
Add 36 and 9 to get 45.
a+b=-14 ab=45
To solve the equation, factor n^{2}-14n+45 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-9 b=-5
The solution is the pair that gives sum -14.
\left(n-9\right)\left(n-5\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=9 n=5
To find equation solutions, solve n-9=0 and n-5=0.
9-6=\sqrt{2\times 9-9}
Substitute 9 for n in the equation n-6=\sqrt{2n-9}.
3=3
Simplify. The value n=9 satisfies the equation.
5-6=\sqrt{2\times 5-9}
Substitute 5 for n in the equation n-6=\sqrt{2n-9}.
-1=1
Simplify. The value n=5 does not satisfy the equation because the left and the right hand side have opposite signs.
n=9
Equation n-6=\sqrt{2n-9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}