Solve for n
n = \frac{21}{4} = 5\frac{1}{4} = 5.25
Share
Copied to clipboard
12n-2\left(3\times 6+5\right)=1\times 12+5
Multiply both sides of the equation by 12, the least common multiple of 6,12.
12n-2\left(18+5\right)=1\times 12+5
Multiply 3 and 6 to get 18.
12n-2\times 23=1\times 12+5
Add 18 and 5 to get 23.
12n-46=1\times 12+5
Multiply -2 and 23 to get -46.
12n-46=12+5
Multiply 1 and 12 to get 12.
12n-46=17
Add 12 and 5 to get 17.
12n=17+46
Add 46 to both sides.
12n=63
Add 17 and 46 to get 63.
n=\frac{63}{12}
Divide both sides by 12.
n=\frac{21}{4}
Reduce the fraction \frac{63}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}