Solve for n
n=\frac{6}{1-2s}
s\neq \frac{1}{2}
Solve for s
s=\frac{1}{2}-\frac{3}{n}
n\neq 0
Share
Copied to clipboard
n-2sn=6
Add 6 to both sides. Anything plus zero gives itself.
\left(1-2s\right)n=6
Combine all terms containing n.
\frac{\left(1-2s\right)n}{1-2s}=\frac{6}{1-2s}
Divide both sides by 1-2s.
n=\frac{6}{1-2s}
Dividing by 1-2s undoes the multiplication by 1-2s.
-2sn-6=-n
Subtract n from both sides. Anything subtracted from zero gives its negation.
-2sn=-n+6
Add 6 to both sides.
\left(-2n\right)s=6-n
The equation is in standard form.
\frac{\left(-2n\right)s}{-2n}=\frac{6-n}{-2n}
Divide both sides by -2n.
s=\frac{6-n}{-2n}
Dividing by -2n undoes the multiplication by -2n.
s=\frac{1}{2}-\frac{3}{n}
Divide -n+6 by -2n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}