Solve for n
n=\frac{4}{\left(x-6\right)^{2}}
x\neq 6
Solve for x (complex solution)
x=2n^{-\frac{1}{2}}+6
x=6-2n^{-\frac{1}{2}}\text{, }n\neq 0
Solve for x
x=6+\frac{2}{\sqrt{n}}
x=6-\frac{2}{\sqrt{n}}\text{, }n>0
Graph
Share
Copied to clipboard
n\left(x^{2}-12x+36\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
nx^{2}-12nx+36n=4
Use the distributive property to multiply n by x^{2}-12x+36.
\left(x^{2}-12x+36\right)n=4
Combine all terms containing n.
\frac{\left(x^{2}-12x+36\right)n}{x^{2}-12x+36}=\frac{4}{x^{2}-12x+36}
Divide both sides by x^{2}-12x+36.
n=\frac{4}{x^{2}-12x+36}
Dividing by x^{2}-12x+36 undoes the multiplication by x^{2}-12x+36.
n=\frac{4}{\left(x-6\right)^{2}}
Divide 4 by x^{2}-12x+36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}