Solve for n
n=\frac{-5+\sqrt{11}i}{9}\approx -0.555555556+0.368513866i
n=\frac{-\sqrt{11}i-5}{9}\approx -0.555555556-0.368513866i
Share
Copied to clipboard
9n^{2}+10n+4=0
Use the distributive property to multiply n by 9n+10.
n=\frac{-10±\sqrt{10^{2}-4\times 9\times 4}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\times 9\times 4}}{2\times 9}
Square 10.
n=\frac{-10±\sqrt{100-36\times 4}}{2\times 9}
Multiply -4 times 9.
n=\frac{-10±\sqrt{100-144}}{2\times 9}
Multiply -36 times 4.
n=\frac{-10±\sqrt{-44}}{2\times 9}
Add 100 to -144.
n=\frac{-10±2\sqrt{11}i}{2\times 9}
Take the square root of -44.
n=\frac{-10±2\sqrt{11}i}{18}
Multiply 2 times 9.
n=\frac{-10+2\sqrt{11}i}{18}
Now solve the equation n=\frac{-10±2\sqrt{11}i}{18} when ± is plus. Add -10 to 2i\sqrt{11}.
n=\frac{-5+\sqrt{11}i}{9}
Divide -10+2i\sqrt{11} by 18.
n=\frac{-2\sqrt{11}i-10}{18}
Now solve the equation n=\frac{-10±2\sqrt{11}i}{18} when ± is minus. Subtract 2i\sqrt{11} from -10.
n=\frac{-\sqrt{11}i-5}{9}
Divide -10-2i\sqrt{11} by 18.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
The equation is now solved.
9n^{2}+10n+4=0
Use the distributive property to multiply n by 9n+10.
9n^{2}+10n=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{9n^{2}+10n}{9}=-\frac{4}{9}
Divide both sides by 9.
n^{2}+\frac{10}{9}n=-\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}+\frac{10}{9}n+\left(\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(\frac{5}{9}\right)^{2}
Divide \frac{10}{9}, the coefficient of the x term, by 2 to get \frac{5}{9}. Then add the square of \frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Square \frac{5}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{11}{81}
Add -\frac{4}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{5}{9}\right)^{2}=-\frac{11}{81}
Factor n^{2}+\frac{10}{9}n+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Take the square root of both sides of the equation.
n+\frac{5}{9}=\frac{\sqrt{11}i}{9} n+\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Simplify.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Subtract \frac{5}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}