Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

9n^{2}+10n+4=0
Use the distributive property to multiply n by 9n+10.
n=\frac{-10±\sqrt{10^{2}-4\times 9\times 4}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\times 9\times 4}}{2\times 9}
Square 10.
n=\frac{-10±\sqrt{100-36\times 4}}{2\times 9}
Multiply -4 times 9.
n=\frac{-10±\sqrt{100-144}}{2\times 9}
Multiply -36 times 4.
n=\frac{-10±\sqrt{-44}}{2\times 9}
Add 100 to -144.
n=\frac{-10±2\sqrt{11}i}{2\times 9}
Take the square root of -44.
n=\frac{-10±2\sqrt{11}i}{18}
Multiply 2 times 9.
n=\frac{-10+2\sqrt{11}i}{18}
Now solve the equation n=\frac{-10±2\sqrt{11}i}{18} when ± is plus. Add -10 to 2i\sqrt{11}.
n=\frac{-5+\sqrt{11}i}{9}
Divide -10+2i\sqrt{11} by 18.
n=\frac{-2\sqrt{11}i-10}{18}
Now solve the equation n=\frac{-10±2\sqrt{11}i}{18} when ± is minus. Subtract 2i\sqrt{11} from -10.
n=\frac{-\sqrt{11}i-5}{9}
Divide -10-2i\sqrt{11} by 18.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
The equation is now solved.
9n^{2}+10n+4=0
Use the distributive property to multiply n by 9n+10.
9n^{2}+10n=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{9n^{2}+10n}{9}=-\frac{4}{9}
Divide both sides by 9.
n^{2}+\frac{10}{9}n=-\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}+\frac{10}{9}n+\left(\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(\frac{5}{9}\right)^{2}
Divide \frac{10}{9}, the coefficient of the x term, by 2 to get \frac{5}{9}. Then add the square of \frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Square \frac{5}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{11}{81}
Add -\frac{4}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{5}{9}\right)^{2}=-\frac{11}{81}
Factor n^{2}+\frac{10}{9}n+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Take the square root of both sides of the equation.
n+\frac{5}{9}=\frac{\sqrt{11}i}{9} n+\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Simplify.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Subtract \frac{5}{9} from both sides of the equation.