Solve for n
n=\frac{3\left(4\sqrt{3}\left(\cos(x)\right)^{2}+2\left(\sin(x)\right)^{2}+\sqrt{3}\sin(2x)\right)}{4\left(3x+2\pi \right)}
x\neq -\frac{2\pi }{3}
Graph
Share
Copied to clipboard
\frac{2}{3}n\pi +nx-\sqrt{3}\left(\cos(x)\right)^{2}=\sin(x)\cos(x-\frac{\pi }{6})
Use the distributive property to multiply n by \frac{2}{3}\pi +x.
\frac{2}{3}n\pi +nx=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
Add \sqrt{3}\left(\cos(x)\right)^{2} to both sides.
\left(\frac{2}{3}\pi +x\right)n=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
Combine all terms containing n.
\left(x+\frac{2\pi }{3}\right)n=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
The equation is in standard form.
\frac{\left(x+\frac{2\pi }{3}\right)n}{x+\frac{2\pi }{3}}=\frac{\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}}{x+\frac{2\pi }{3}}
Divide both sides by \frac{2}{3}\pi +x.
n=\frac{\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}}{x+\frac{2\pi }{3}}
Dividing by \frac{2}{3}\pi +x undoes the multiplication by \frac{2}{3}\pi +x.
n=\frac{3\left(\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}\right)}{3x+2\pi }
Divide \cos(\frac{6x-\pi }{6})\sin(x)+\left(\cos(x)\right)^{2}\sqrt{3} by \frac{2}{3}\pi +x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}