Skip to main content
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}n\pi +nx-\sqrt{3}\left(\cos(x)\right)^{2}=\sin(x)\cos(x-\frac{\pi }{6})
Use the distributive property to multiply n by \frac{2}{3}\pi +x.
\frac{2}{3}n\pi +nx=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
Add \sqrt{3}\left(\cos(x)\right)^{2} to both sides.
\left(\frac{2}{3}\pi +x\right)n=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
Combine all terms containing n.
\left(x+\frac{2\pi }{3}\right)n=\sin(x)\cos(x-\frac{\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}
The equation is in standard form.
\frac{\left(x+\frac{2\pi }{3}\right)n}{x+\frac{2\pi }{3}}=\frac{\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}}{x+\frac{2\pi }{3}}
Divide both sides by \frac{2}{3}\pi +x.
n=\frac{\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}}{x+\frac{2\pi }{3}}
Dividing by \frac{2}{3}\pi +x undoes the multiplication by \frac{2}{3}\pi +x.
n=\frac{3\left(\sin(x)\cos(\frac{6x-\pi }{6})+\sqrt{3}\left(\cos(x)\right)^{2}\right)}{3x+2\pi }
Divide \cos(\frac{6x-\pi }{6})\sin(x)+\left(\cos(x)\right)^{2}\sqrt{3} by \frac{2}{3}\pi +x.