Solve for n (complex solution)
n=\frac{q^{-\frac{1}{2}}}{x\mu }
q\neq 0\text{ and }x\neq 0\text{ and }\mu \neq 0
Solve for n
n=\frac{1}{\sqrt{q}x\mu }
x\neq 0\text{ and }\mu \neq 0\text{ and }q>0
Solve for q (complex solution)
q=\frac{1}{\left(nx\mu \right)^{2}}
arg(\sqrt{\frac{1}{\left(nx\mu \right)^{2}}}nx\mu )<\pi \text{ and }x\neq 0\text{ and }\mu \neq 0\text{ and }n\neq 0
Solve for q
q=\frac{1}{\left(nx\mu \right)^{2}}
\left(x<0\text{ and }n<0\text{ and }\mu >0\right)\text{ or }\left(x<0\text{ and }n>0\text{ and }\mu <0\right)\text{ or }\left(x>0\text{ and }n>0\text{ and }\mu >0\right)\text{ or }\left(x>0\text{ and }n<0\text{ and }\mu <0\right)
Graph
Share
Copied to clipboard
n\mu xq=\sqrt{q}
Multiply both sides of the equation by q.
qx\mu n=\sqrt{q}
The equation is in standard form.
\frac{qx\mu n}{qx\mu }=\frac{\sqrt{q}}{qx\mu }
Divide both sides by \mu xq.
n=\frac{\sqrt{q}}{qx\mu }
Dividing by \mu xq undoes the multiplication by \mu xq.
n=\frac{q^{-\frac{1}{2}}}{x\mu }
Divide \sqrt{q} by \mu xq.
n\mu xq=\sqrt{q}
Multiply both sides of the equation by q.
qx\mu n=\sqrt{q}
The equation is in standard form.
\frac{qx\mu n}{qx\mu }=\frac{\sqrt{q}}{qx\mu }
Divide both sides by \mu xq.
n=\frac{\sqrt{q}}{qx\mu }
Dividing by \mu xq undoes the multiplication by \mu xq.
n=\frac{1}{\sqrt{q}x\mu }
Divide \sqrt{q} by \mu xq.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}