Solve for n
n=-\frac{8\left(2-x\right)}{5\left(x+2\right)}
x\neq 3\text{ and }x\neq -2
Solve for x
x=-\frac{2\left(5n+8\right)}{5n-8}
n\neq \frac{8}{25}\text{ and }n\neq \frac{8}{5}
Graph
Share
Copied to clipboard
n\left(x+2\right)\times 5-\left(x+5\right)=\left(x-3\right)\times 7
Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,\left(x-3\right)\left(x+2\right),x+2.
\left(nx+2n\right)\times 5-\left(x+5\right)=\left(x-3\right)\times 7
Use the distributive property to multiply n by x+2.
5nx+10n-\left(x+5\right)=\left(x-3\right)\times 7
Use the distributive property to multiply nx+2n by 5.
5nx+10n-x-5=\left(x-3\right)\times 7
To find the opposite of x+5, find the opposite of each term.
5nx+10n-x-5=7x-21
Use the distributive property to multiply x-3 by 7.
5nx+10n-5=7x-21+x
Add x to both sides.
5nx+10n-5=8x-21
Combine 7x and x to get 8x.
5nx+10n=8x-21+5
Add 5 to both sides.
5nx+10n=8x-16
Add -21 and 5 to get -16.
\left(5x+10\right)n=8x-16
Combine all terms containing n.
\frac{\left(5x+10\right)n}{5x+10}=\frac{8x-16}{5x+10}
Divide both sides by 5x+10.
n=\frac{8x-16}{5x+10}
Dividing by 5x+10 undoes the multiplication by 5x+10.
n=\frac{8\left(x-2\right)}{5\left(x+2\right)}
Divide -16+8x by 5x+10.
n\left(x+2\right)\times 5-\left(x+5\right)=\left(x-3\right)\times 7
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x-3,\left(x-3\right)\left(x+2\right),x+2.
\left(nx+2n\right)\times 5-\left(x+5\right)=\left(x-3\right)\times 7
Use the distributive property to multiply n by x+2.
5nx+10n-\left(x+5\right)=\left(x-3\right)\times 7
Use the distributive property to multiply nx+2n by 5.
5nx+10n-x-5=\left(x-3\right)\times 7
To find the opposite of x+5, find the opposite of each term.
5nx+10n-x-5=7x-21
Use the distributive property to multiply x-3 by 7.
5nx+10n-x-5-7x=-21
Subtract 7x from both sides.
5nx+10n-8x-5=-21
Combine -x and -7x to get -8x.
5nx-8x-5=-21-10n
Subtract 10n from both sides.
5nx-8x=-21-10n+5
Add 5 to both sides.
5nx-8x=-16-10n
Add -21 and 5 to get -16.
\left(5n-8\right)x=-16-10n
Combine all terms containing x.
\left(5n-8\right)x=-10n-16
The equation is in standard form.
\frac{\left(5n-8\right)x}{5n-8}=\frac{-10n-16}{5n-8}
Divide both sides by 5n-8.
x=\frac{-10n-16}{5n-8}
Dividing by 5n-8 undoes the multiplication by 5n-8.
x=-\frac{2\left(5n+8\right)}{5n-8}
Divide -16-10n by 5n-8.
x=-\frac{2\left(5n+8\right)}{5n-8}\text{, }x\neq -2\text{ and }x\neq 3
Variable x cannot be equal to any of the values -2,3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}