Solve for f
f=\frac{uv}{nv+u}
u\neq 0\text{ and }v\neq 0\text{ and }n\neq -\frac{u}{v}\text{ and }u\neq -nv
Solve for n
n=\frac{u\left(v-f\right)}{fv}
u\neq 0\text{ and }v\neq 0\text{ and }f\neq 0
Share
Copied to clipboard
nfv\times 1+fu=uv
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by fuv, the least common multiple of u,v,f.
fnv+fu=uv
Reorder the terms.
\left(nv+u\right)f=uv
Combine all terms containing f.
\frac{\left(nv+u\right)f}{nv+u}=\frac{uv}{nv+u}
Divide both sides by nv+u.
f=\frac{uv}{nv+u}
Dividing by nv+u undoes the multiplication by nv+u.
f=\frac{uv}{nv+u}\text{, }f\neq 0
Variable f cannot be equal to 0.
nfv\times 1+fu=uv
Multiply both sides of the equation by fuv, the least common multiple of u,v,f.
nfv\times 1=uv-fu
Subtract fu from both sides.
fnv=uv-fu
Reorder the terms.
fvn=uv-fu
The equation is in standard form.
\frac{fvn}{fv}=\frac{u\left(v-f\right)}{fv}
Divide both sides by fv.
n=\frac{u\left(v-f\right)}{fv}
Dividing by fv undoes the multiplication by fv.
n=\frac{u}{f}-\frac{u}{v}
Divide u\left(v-f\right) by fv.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}