Solve for n
n=-\frac{10}{x}
x\neq 0
Solve for x
x=-\frac{10}{n}
n\neq 0
Graph
Share
Copied to clipboard
n\left(-\frac{3}{2}\right)x=15
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\left(-\frac{3x}{2}\right)n=15
The equation is in standard form.
\frac{\left(-\frac{3x}{2}\right)n}{-\frac{3x}{2}}=\frac{15}{-\frac{3x}{2}}
Divide both sides by -\frac{3}{2}x.
n=\frac{15}{-\frac{3x}{2}}
Dividing by -\frac{3}{2}x undoes the multiplication by -\frac{3}{2}x.
n=-\frac{10}{x}
Divide 15 by -\frac{3}{2}x.
n\left(-\frac{3}{2}\right)x=15
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\left(-\frac{3n}{2}\right)x=15
The equation is in standard form.
\frac{\left(-\frac{3n}{2}\right)x}{-\frac{3n}{2}}=\frac{15}{-\frac{3n}{2}}
Divide both sides by -\frac{3}{2}n.
x=\frac{15}{-\frac{3n}{2}}
Dividing by -\frac{3}{2}n undoes the multiplication by -\frac{3}{2}n.
x=-\frac{10}{n}
Divide 15 by -\frac{3}{2}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}