Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

n\left(n-1\right)!+\left(n-1\right)!=\left(xn+x\right)n\left(n-1\right)!
Use the distributive property to multiply x by n+1.
n\left(n-1\right)!+\left(n-1\right)!=\left(xn^{2}+xn\right)\left(n-1\right)!
Use the distributive property to multiply xn+x by n.
n\left(n-1\right)!+\left(n-1\right)!=xn^{2}\left(n-1\right)!+xn\left(n-1\right)!
Use the distributive property to multiply xn^{2}+xn by \left(n-1\right)!.
xn^{2}\left(n-1\right)!+xn\left(n-1\right)!=n\left(n-1\right)!+\left(n-1\right)!
Swap sides so that all variable terms are on the left hand side.
\left(n^{2}\left(n-1\right)!+n\left(n-1\right)!\right)x=n\left(n-1\right)!+\left(n-1\right)!
Combine all terms containing x.
\frac{\left(n^{2}\left(n-1\right)!+n\left(n-1\right)!\right)x}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}=\frac{\left(n+1\right)\left(n-1\right)!}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}
Divide both sides by n^{2}\left(n-1\right)!+n\left(n-1\right)!.
x=\frac{\left(n+1\right)\left(n-1\right)!}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}
Dividing by n^{2}\left(n-1\right)!+n\left(n-1\right)! undoes the multiplication by n^{2}\left(n-1\right)!+n\left(n-1\right)!.
x=\frac{1}{n}
Divide \left(n-1\right)!\left(1+n\right) by n^{2}\left(n-1\right)!+n\left(n-1\right)!.
n\left(n-1\right)!+\left(n-1\right)!=\left(xn+x\right)n\left(n-1\right)!
Use the distributive property to multiply x by n+1.
n\left(n-1\right)!+\left(n-1\right)!=\left(xn^{2}+xn\right)\left(n-1\right)!
Use the distributive property to multiply xn+x by n.
n\left(n-1\right)!+\left(n-1\right)!=xn^{2}\left(n-1\right)!+xn\left(n-1\right)!
Use the distributive property to multiply xn^{2}+xn by \left(n-1\right)!.
xn^{2}\left(n-1\right)!+xn\left(n-1\right)!=n\left(n-1\right)!+\left(n-1\right)!
Swap sides so that all variable terms are on the left hand side.
\left(n^{2}\left(n-1\right)!+n\left(n-1\right)!\right)x=n\left(n-1\right)!+\left(n-1\right)!
Combine all terms containing x.
\frac{\left(n^{2}\left(n-1\right)!+n\left(n-1\right)!\right)x}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}=\frac{\left(n+1\right)\left(n-1\right)!}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}
Divide both sides by n^{2}\left(n-1\right)!+n\left(n-1\right)!.
x=\frac{\left(n+1\right)\left(n-1\right)!}{n^{2}\left(n-1\right)!+n\left(n-1\right)!}
Dividing by n^{2}\left(n-1\right)!+n\left(n-1\right)! undoes the multiplication by n^{2}\left(n-1\right)!+n\left(n-1\right)!.
x=\frac{1}{n}
Divide \left(n-1\right)!\left(1+n\right) by n^{2}\left(n-1\right)!+n\left(n-1\right)!.