Factor
\left(n-3\right)\left(n-2\right)\left(n+3\right)\left(n+6\right)
Evaluate
\left(n-2\right)\left(n+6\right)\left(n^{2}-9\right)
Quiz
Polynomial
5 problems similar to:
n ^ { 4 } - 9 n ^ { 2 } + 4 n ^ { 3 } - 36 n - 12 n ^ { 2 } + 108
Share
Copied to clipboard
n^{4}+4n^{3}-21n^{2}-36n+108
Multiply and combine like terms.
n^{4}+4n^{3}-21n^{2}-36n+108=0
To factor the expression, solve the equation where it equals to 0.
±108,±54,±36,±27,±18,±12,±9,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 108 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
n=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
n^{3}+6n^{2}-9n-54=0
By Factor theorem, n-k is a factor of the polynomial for each root k. Divide n^{4}+4n^{3}-21n^{2}-36n+108 by n-2 to get n^{3}+6n^{2}-9n-54. To factor the result, solve the equation where it equals to 0.
±54,±27,±18,±9,±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -54 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
n=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
n^{2}+9n+18=0
By Factor theorem, n-k is a factor of the polynomial for each root k. Divide n^{3}+6n^{2}-9n-54 by n-3 to get n^{2}+9n+18. To factor the result, solve the equation where it equals to 0.
n=\frac{-9±\sqrt{9^{2}-4\times 1\times 18}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 9 for b, and 18 for c in the quadratic formula.
n=\frac{-9±3}{2}
Do the calculations.
n=-6 n=-3
Solve the equation n^{2}+9n+18=0 when ± is plus and when ± is minus.
\left(n-3\right)\left(n-2\right)\left(n+3\right)\left(n+6\right)
Rewrite the factored expression using the obtained roots.
n^{4}-21n^{2}+4n^{3}-36n+108
Combine -9n^{2} and -12n^{2} to get -21n^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}