Solve for n
n=4\sqrt{7}+6\approx 16.583005244
n=6-4\sqrt{7}\approx -4.583005244
Share
Copied to clipboard
n^{2}-12n-84=-8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}-12n-84-\left(-8\right)=-8-\left(-8\right)
Add 8 to both sides of the equation.
n^{2}-12n-84-\left(-8\right)=0
Subtracting -8 from itself leaves 0.
n^{2}-12n-76=0
Subtract -8 from -84.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-76\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and -76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-12\right)±\sqrt{144-4\left(-76\right)}}{2}
Square -12.
n=\frac{-\left(-12\right)±\sqrt{144+304}}{2}
Multiply -4 times -76.
n=\frac{-\left(-12\right)±\sqrt{448}}{2}
Add 144 to 304.
n=\frac{-\left(-12\right)±8\sqrt{7}}{2}
Take the square root of 448.
n=\frac{12±8\sqrt{7}}{2}
The opposite of -12 is 12.
n=\frac{8\sqrt{7}+12}{2}
Now solve the equation n=\frac{12±8\sqrt{7}}{2} when ± is plus. Add 12 to 8\sqrt{7}.
n=4\sqrt{7}+6
Divide 12+8\sqrt{7} by 2.
n=\frac{12-8\sqrt{7}}{2}
Now solve the equation n=\frac{12±8\sqrt{7}}{2} when ± is minus. Subtract 8\sqrt{7} from 12.
n=6-4\sqrt{7}
Divide 12-8\sqrt{7} by 2.
n=4\sqrt{7}+6 n=6-4\sqrt{7}
The equation is now solved.
n^{2}-12n-84=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}-12n-84-\left(-84\right)=-8-\left(-84\right)
Add 84 to both sides of the equation.
n^{2}-12n=-8-\left(-84\right)
Subtracting -84 from itself leaves 0.
n^{2}-12n=76
Subtract -84 from -8.
n^{2}-12n+\left(-6\right)^{2}=76+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-12n+36=76+36
Square -6.
n^{2}-12n+36=112
Add 76 to 36.
\left(n-6\right)^{2}=112
Factor n^{2}-12n+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-6\right)^{2}}=\sqrt{112}
Take the square root of both sides of the equation.
n-6=4\sqrt{7} n-6=-4\sqrt{7}
Simplify.
n=4\sqrt{7}+6 n=6-4\sqrt{7}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}