Solve for n
n=\sqrt{5}+5\approx 7.236067977
n=5-\sqrt{5}\approx 2.763932023
Share
Copied to clipboard
n^{2}-10n+13=-7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}-10n+13-\left(-7\right)=-7-\left(-7\right)
Add 7 to both sides of the equation.
n^{2}-10n+13-\left(-7\right)=0
Subtracting -7 from itself leaves 0.
n^{2}-10n+20=0
Subtract -7 from 13.
n=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-10\right)±\sqrt{100-4\times 20}}{2}
Square -10.
n=\frac{-\left(-10\right)±\sqrt{100-80}}{2}
Multiply -4 times 20.
n=\frac{-\left(-10\right)±\sqrt{20}}{2}
Add 100 to -80.
n=\frac{-\left(-10\right)±2\sqrt{5}}{2}
Take the square root of 20.
n=\frac{10±2\sqrt{5}}{2}
The opposite of -10 is 10.
n=\frac{2\sqrt{5}+10}{2}
Now solve the equation n=\frac{10±2\sqrt{5}}{2} when ± is plus. Add 10 to 2\sqrt{5}.
n=\sqrt{5}+5
Divide 10+2\sqrt{5} by 2.
n=\frac{10-2\sqrt{5}}{2}
Now solve the equation n=\frac{10±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 10.
n=5-\sqrt{5}
Divide 10-2\sqrt{5} by 2.
n=\sqrt{5}+5 n=5-\sqrt{5}
The equation is now solved.
n^{2}-10n+13=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}-10n+13-13=-7-13
Subtract 13 from both sides of the equation.
n^{2}-10n=-7-13
Subtracting 13 from itself leaves 0.
n^{2}-10n=-20
Subtract 13 from -7.
n^{2}-10n+\left(-5\right)^{2}=-20+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-10n+25=-20+25
Square -5.
n^{2}-10n+25=5
Add -20 to 25.
\left(n-5\right)^{2}=5
Factor n^{2}-10n+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-5\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
n-5=\sqrt{5} n-5=-\sqrt{5}
Simplify.
n=\sqrt{5}+5 n=5-\sqrt{5}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}