Solve for n
n=\frac{\sqrt{3}+i}{2}\approx 0.866025404+0.5i
n=\frac{\sqrt{3}-i}{2}\approx 0.866025404-0.5i
Share
Copied to clipboard
n^{2}-\sqrt{3}n+1=0
Reorder the terms.
n^{2}+\left(-\sqrt{3}\right)n+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{\left(-\sqrt{3}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\sqrt{3} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{3-4}}{2}
Square -\sqrt{3}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{-1}}{2}
Add 3 to -4.
n=\frac{-\left(-\sqrt{3}\right)±i}{2}
Take the square root of -1.
n=\frac{\sqrt{3}±i}{2}
The opposite of -\sqrt{3} is \sqrt{3}.
n=\frac{\sqrt{3}+i}{2}
Now solve the equation n=\frac{\sqrt{3}±i}{2} when ± is plus. Add \sqrt{3} to i.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide \sqrt{3}+i by 2.
n=\frac{\sqrt{3}-i}{2}
Now solve the equation n=\frac{\sqrt{3}±i}{2} when ± is minus. Subtract i from \sqrt{3}.
n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Divide \sqrt{3}-i by 2.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
The equation is now solved.
n^{2}-\sqrt{3}n=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
n^{2}+\left(-\sqrt{3}\right)n=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+\left(-\sqrt{3}\right)n+\left(-\frac{\sqrt{3}}{2}\right)^{2}=-1+\left(-\frac{\sqrt{3}}{2}\right)^{2}
Divide -\sqrt{3}, the coefficient of the x term, by 2 to get -\frac{\sqrt{3}}{2}. Then add the square of -\frac{\sqrt{3}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-1+\frac{3}{4}
Square -\frac{\sqrt{3}}{2}.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-\frac{1}{4}
Add -1 to \frac{3}{4}.
\left(n-\frac{\sqrt{3}}{2}\right)^{2}=-\frac{1}{4}
Factor n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
n-\frac{\sqrt{3}}{2}=\frac{1}{2}i n-\frac{\sqrt{3}}{2}=-\frac{1}{2}i
Simplify.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Add \frac{\sqrt{3}}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}