Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-\sqrt{3}n+1=0
Reorder the terms.
n^{2}+\left(-\sqrt{3}\right)n+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{\left(-\sqrt{3}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\sqrt{3} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{3-4}}{2}
Square -\sqrt{3}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{-1}}{2}
Add 3 to -4.
n=\frac{-\left(-\sqrt{3}\right)±i}{2}
Take the square root of -1.
n=\frac{\sqrt{3}±i}{2}
The opposite of -\sqrt{3} is \sqrt{3}.
n=\frac{\sqrt{3}+i}{2}
Now solve the equation n=\frac{\sqrt{3}±i}{2} when ± is plus. Add \sqrt{3} to i.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide \sqrt{3}+i by 2.
n=\frac{\sqrt{3}-i}{2}
Now solve the equation n=\frac{\sqrt{3}±i}{2} when ± is minus. Subtract i from \sqrt{3}.
n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Divide \sqrt{3}-i by 2.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
The equation is now solved.
n^{2}-\sqrt{3}n=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
n^{2}+\left(-\sqrt{3}\right)n=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+\left(-\sqrt{3}\right)n+\left(-\frac{\sqrt{3}}{2}\right)^{2}=-1+\left(-\frac{\sqrt{3}}{2}\right)^{2}
Divide -\sqrt{3}, the coefficient of the x term, by 2 to get -\frac{\sqrt{3}}{2}. Then add the square of -\frac{\sqrt{3}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-1+\frac{3}{4}
Square -\frac{\sqrt{3}}{2}.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-\frac{1}{4}
Add -1 to \frac{3}{4}.
\left(n-\frac{\sqrt{3}}{2}\right)^{2}=-\frac{1}{4}
Factor n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
n-\frac{\sqrt{3}}{2}=\frac{1}{2}i n-\frac{\sqrt{3}}{2}=-\frac{1}{2}i
Simplify.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Add \frac{\sqrt{3}}{2} to both sides of the equation.