Solve for n
n=15
n=-15
Share
Copied to clipboard
n^{2}-225=0
Subtract 225 from both sides.
\left(n-15\right)\left(n+15\right)=0
Consider n^{2}-225. Rewrite n^{2}-225 as n^{2}-15^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=15 n=-15
To find equation solutions, solve n-15=0 and n+15=0.
n=15 n=-15
Take the square root of both sides of the equation.
n^{2}-225=0
Subtract 225 from both sides.
n=\frac{0±\sqrt{0^{2}-4\left(-225\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-225\right)}}{2}
Square 0.
n=\frac{0±\sqrt{900}}{2}
Multiply -4 times -225.
n=\frac{0±30}{2}
Take the square root of 900.
n=15
Now solve the equation n=\frac{0±30}{2} when ± is plus. Divide 30 by 2.
n=-15
Now solve the equation n=\frac{0±30}{2} when ± is minus. Divide -30 by 2.
n=15 n=-15
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}