Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-18n=4
Subtract 18n from both sides.
n^{2}-18n-4=0
Subtract 4 from both sides.
n=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-18\right)±\sqrt{324-4\left(-4\right)}}{2}
Square -18.
n=\frac{-\left(-18\right)±\sqrt{324+16}}{2}
Multiply -4 times -4.
n=\frac{-\left(-18\right)±\sqrt{340}}{2}
Add 324 to 16.
n=\frac{-\left(-18\right)±2\sqrt{85}}{2}
Take the square root of 340.
n=\frac{18±2\sqrt{85}}{2}
The opposite of -18 is 18.
n=\frac{2\sqrt{85}+18}{2}
Now solve the equation n=\frac{18±2\sqrt{85}}{2} when ± is plus. Add 18 to 2\sqrt{85}.
n=\sqrt{85}+9
Divide 18+2\sqrt{85} by 2.
n=\frac{18-2\sqrt{85}}{2}
Now solve the equation n=\frac{18±2\sqrt{85}}{2} when ± is minus. Subtract 2\sqrt{85} from 18.
n=9-\sqrt{85}
Divide 18-2\sqrt{85} by 2.
n=\sqrt{85}+9 n=9-\sqrt{85}
The equation is now solved.
n^{2}-18n=4
Subtract 18n from both sides.
n^{2}-18n+\left(-9\right)^{2}=4+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-18n+81=4+81
Square -9.
n^{2}-18n+81=85
Add 4 to 81.
\left(n-9\right)^{2}=85
Factor n^{2}-18n+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-9\right)^{2}}=\sqrt{85}
Take the square root of both sides of the equation.
n-9=\sqrt{85} n-9=-\sqrt{85}
Simplify.
n=\sqrt{85}+9 n=9-\sqrt{85}
Add 9 to both sides of the equation.