Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+n-400=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-1±\sqrt{1^{2}-4\times 1\left(-400\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -400 for c in the quadratic formula.
n=\frac{-1±\sqrt{1601}}{2}
Do the calculations.
n=\frac{\sqrt{1601}-1}{2} n=\frac{-\sqrt{1601}-1}{2}
Solve the equation n=\frac{-1±\sqrt{1601}}{2} when ± is plus and when ± is minus.
\left(n-\frac{\sqrt{1601}-1}{2}\right)\left(n-\frac{-\sqrt{1601}-1}{2}\right)\leq 0
Rewrite the inequality by using the obtained solutions.
n-\frac{\sqrt{1601}-1}{2}\geq 0 n-\frac{-\sqrt{1601}-1}{2}\leq 0
For the product to be ≤0, one of the values n-\frac{\sqrt{1601}-1}{2} and n-\frac{-\sqrt{1601}-1}{2} has to be ≥0 and the other has to be ≤0. Consider the case when n-\frac{\sqrt{1601}-1}{2}\geq 0 and n-\frac{-\sqrt{1601}-1}{2}\leq 0.
n\in \emptyset
This is false for any n.
n-\frac{-\sqrt{1601}-1}{2}\geq 0 n-\frac{\sqrt{1601}-1}{2}\leq 0
Consider the case when n-\frac{\sqrt{1601}-1}{2}\leq 0 and n-\frac{-\sqrt{1601}-1}{2}\geq 0.
n\in \begin{bmatrix}\frac{-\sqrt{1601}-1}{2},\frac{\sqrt{1601}-1}{2}\end{bmatrix}
The solution satisfying both inequalities is n\in \left[\frac{-\sqrt{1601}-1}{2},\frac{\sqrt{1601}-1}{2}\right].
n\in \begin{bmatrix}\frac{-\sqrt{1601}-1}{2},\frac{\sqrt{1601}-1}{2}\end{bmatrix}
The final solution is the union of the obtained solutions.