Solve for n
n=-221
n=220
Share
Copied to clipboard
n^{2}+n-48620=0
Subtract 48620 from both sides.
a+b=1 ab=-48620
To solve the equation, factor n^{2}+n-48620 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,48620 -2,24310 -4,12155 -5,9724 -10,4862 -11,4420 -13,3740 -17,2860 -20,2431 -22,2210 -26,1870 -34,1430 -44,1105 -52,935 -55,884 -65,748 -68,715 -85,572 -110,442 -130,374 -143,340 -170,286 -187,260 -220,221
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48620.
-1+48620=48619 -2+24310=24308 -4+12155=12151 -5+9724=9719 -10+4862=4852 -11+4420=4409 -13+3740=3727 -17+2860=2843 -20+2431=2411 -22+2210=2188 -26+1870=1844 -34+1430=1396 -44+1105=1061 -52+935=883 -55+884=829 -65+748=683 -68+715=647 -85+572=487 -110+442=332 -130+374=244 -143+340=197 -170+286=116 -187+260=73 -220+221=1
Calculate the sum for each pair.
a=-220 b=221
The solution is the pair that gives sum 1.
\left(n-220\right)\left(n+221\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=220 n=-221
To find equation solutions, solve n-220=0 and n+221=0.
n^{2}+n-48620=0
Subtract 48620 from both sides.
a+b=1 ab=1\left(-48620\right)=-48620
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn-48620. To find a and b, set up a system to be solved.
-1,48620 -2,24310 -4,12155 -5,9724 -10,4862 -11,4420 -13,3740 -17,2860 -20,2431 -22,2210 -26,1870 -34,1430 -44,1105 -52,935 -55,884 -65,748 -68,715 -85,572 -110,442 -130,374 -143,340 -170,286 -187,260 -220,221
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48620.
-1+48620=48619 -2+24310=24308 -4+12155=12151 -5+9724=9719 -10+4862=4852 -11+4420=4409 -13+3740=3727 -17+2860=2843 -20+2431=2411 -22+2210=2188 -26+1870=1844 -34+1430=1396 -44+1105=1061 -52+935=883 -55+884=829 -65+748=683 -68+715=647 -85+572=487 -110+442=332 -130+374=244 -143+340=197 -170+286=116 -187+260=73 -220+221=1
Calculate the sum for each pair.
a=-220 b=221
The solution is the pair that gives sum 1.
\left(n^{2}-220n\right)+\left(221n-48620\right)
Rewrite n^{2}+n-48620 as \left(n^{2}-220n\right)+\left(221n-48620\right).
n\left(n-220\right)+221\left(n-220\right)
Factor out n in the first and 221 in the second group.
\left(n-220\right)\left(n+221\right)
Factor out common term n-220 by using distributive property.
n=220 n=-221
To find equation solutions, solve n-220=0 and n+221=0.
n^{2}+n=48620
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+n-48620=48620-48620
Subtract 48620 from both sides of the equation.
n^{2}+n-48620=0
Subtracting 48620 from itself leaves 0.
n=\frac{-1±\sqrt{1^{2}-4\left(-48620\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -48620 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-48620\right)}}{2}
Square 1.
n=\frac{-1±\sqrt{1+194480}}{2}
Multiply -4 times -48620.
n=\frac{-1±\sqrt{194481}}{2}
Add 1 to 194480.
n=\frac{-1±441}{2}
Take the square root of 194481.
n=\frac{440}{2}
Now solve the equation n=\frac{-1±441}{2} when ± is plus. Add -1 to 441.
n=220
Divide 440 by 2.
n=-\frac{442}{2}
Now solve the equation n=\frac{-1±441}{2} when ± is minus. Subtract 441 from -1.
n=-221
Divide -442 by 2.
n=220 n=-221
The equation is now solved.
n^{2}+n=48620
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=48620+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=48620+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{194481}{4}
Add 48620 to \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{194481}{4}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{194481}{4}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{441}{2} n+\frac{1}{2}=-\frac{441}{2}
Simplify.
n=220 n=-221
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}