Solve for n
n=-7
n=6
Share
Copied to clipboard
n^{2}+n-42=0
Subtract 42 from both sides.
a+b=1 ab=-42
To solve the equation, factor n^{2}+n-42 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,42 -2,21 -3,14 -6,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Calculate the sum for each pair.
a=-6 b=7
The solution is the pair that gives sum 1.
\left(n-6\right)\left(n+7\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=6 n=-7
To find equation solutions, solve n-6=0 and n+7=0.
n^{2}+n-42=0
Subtract 42 from both sides.
a+b=1 ab=1\left(-42\right)=-42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn-42. To find a and b, set up a system to be solved.
-1,42 -2,21 -3,14 -6,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Calculate the sum for each pair.
a=-6 b=7
The solution is the pair that gives sum 1.
\left(n^{2}-6n\right)+\left(7n-42\right)
Rewrite n^{2}+n-42 as \left(n^{2}-6n\right)+\left(7n-42\right).
n\left(n-6\right)+7\left(n-6\right)
Factor out n in the first and 7 in the second group.
\left(n-6\right)\left(n+7\right)
Factor out common term n-6 by using distributive property.
n=6 n=-7
To find equation solutions, solve n-6=0 and n+7=0.
n^{2}+n=42
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+n-42=42-42
Subtract 42 from both sides of the equation.
n^{2}+n-42=0
Subtracting 42 from itself leaves 0.
n=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
Square 1.
n=\frac{-1±\sqrt{1+168}}{2}
Multiply -4 times -42.
n=\frac{-1±\sqrt{169}}{2}
Add 1 to 168.
n=\frac{-1±13}{2}
Take the square root of 169.
n=\frac{12}{2}
Now solve the equation n=\frac{-1±13}{2} when ± is plus. Add -1 to 13.
n=6
Divide 12 by 2.
n=-\frac{14}{2}
Now solve the equation n=\frac{-1±13}{2} when ± is minus. Subtract 13 from -1.
n=-7
Divide -14 by 2.
n=6 n=-7
The equation is now solved.
n^{2}+n=42
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=42+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=42+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{169}{4}
Add 42 to \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{169}{4}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{13}{2} n+\frac{1}{2}=-\frac{13}{2}
Simplify.
n=6 n=-7
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}