Factor
\left(n+6\right)\left(n+9\right)
Evaluate
\left(n+6\right)\left(n+9\right)
Share
Copied to clipboard
n^{2}+15n+54
Multiply and combine like terms.
a+b=15 ab=1\times 54=54
Factor the expression by grouping. First, the expression needs to be rewritten as n^{2}+an+bn+54. To find a and b, set up a system to be solved.
1,54 2,27 3,18 6,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 54.
1+54=55 2+27=29 3+18=21 6+9=15
Calculate the sum for each pair.
a=6 b=9
The solution is the pair that gives sum 15.
\left(n^{2}+6n\right)+\left(9n+54\right)
Rewrite n^{2}+15n+54 as \left(n^{2}+6n\right)+\left(9n+54\right).
n\left(n+6\right)+9\left(n+6\right)
Factor out n in the first and 9 in the second group.
\left(n+6\right)\left(n+9\right)
Factor out common term n+6 by using distributive property.
n^{2}+15n+54
Combine 9n and 6n to get 15n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}