Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+8n-2=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+8n-2-6=6-6
Subtract 6 from both sides of the equation.
n^{2}+8n-2-6=0
Subtracting 6 from itself leaves 0.
n^{2}+8n-8=0
Subtract 6 from -2.
n=\frac{-8±\sqrt{8^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-8±\sqrt{64-4\left(-8\right)}}{2}
Square 8.
n=\frac{-8±\sqrt{64+32}}{2}
Multiply -4 times -8.
n=\frac{-8±\sqrt{96}}{2}
Add 64 to 32.
n=\frac{-8±4\sqrt{6}}{2}
Take the square root of 96.
n=\frac{4\sqrt{6}-8}{2}
Now solve the equation n=\frac{-8±4\sqrt{6}}{2} when ± is plus. Add -8 to 4\sqrt{6}.
n=2\sqrt{6}-4
Divide -8+4\sqrt{6} by 2.
n=\frac{-4\sqrt{6}-8}{2}
Now solve the equation n=\frac{-8±4\sqrt{6}}{2} when ± is minus. Subtract 4\sqrt{6} from -8.
n=-2\sqrt{6}-4
Divide -8-4\sqrt{6} by 2.
n=2\sqrt{6}-4 n=-2\sqrt{6}-4
The equation is now solved.
n^{2}+8n-2=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+8n-2-\left(-2\right)=6-\left(-2\right)
Add 2 to both sides of the equation.
n^{2}+8n=6-\left(-2\right)
Subtracting -2 from itself leaves 0.
n^{2}+8n=8
Subtract -2 from 6.
n^{2}+8n+4^{2}=8+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+8n+16=8+16
Square 4.
n^{2}+8n+16=24
Add 8 to 16.
\left(n+4\right)^{2}=24
Factor n^{2}+8n+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+4\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
n+4=2\sqrt{6} n+4=-2\sqrt{6}
Simplify.
n=2\sqrt{6}-4 n=-2\sqrt{6}-4
Subtract 4 from both sides of the equation.