Skip to main content
Solve for n (complex solution)
Tick mark Image
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+8n=-13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+8n-\left(-13\right)=-13-\left(-13\right)
Add 13 to both sides of the equation.
n^{2}+8n-\left(-13\right)=0
Subtracting -13 from itself leaves 0.
n^{2}+8n+13=0
Subtract -13 from 0.
n=\frac{-8±\sqrt{8^{2}-4\times 13}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-8±\sqrt{64-4\times 13}}{2}
Square 8.
n=\frac{-8±\sqrt{64-52}}{2}
Multiply -4 times 13.
n=\frac{-8±\sqrt{12}}{2}
Add 64 to -52.
n=\frac{-8±2\sqrt{3}}{2}
Take the square root of 12.
n=\frac{2\sqrt{3}-8}{2}
Now solve the equation n=\frac{-8±2\sqrt{3}}{2} when ± is plus. Add -8 to 2\sqrt{3}.
n=\sqrt{3}-4
Divide -8+2\sqrt{3} by 2.
n=\frac{-2\sqrt{3}-8}{2}
Now solve the equation n=\frac{-8±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -8.
n=-\sqrt{3}-4
Divide -8-2\sqrt{3} by 2.
n=\sqrt{3}-4 n=-\sqrt{3}-4
The equation is now solved.
n^{2}+8n=-13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+8n+4^{2}=-13+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+8n+16=-13+16
Square 4.
n^{2}+8n+16=3
Add -13 to 16.
\left(n+4\right)^{2}=3
Factor n^{2}+8n+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+4\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
n+4=\sqrt{3} n+4=-\sqrt{3}
Simplify.
n=\sqrt{3}-4 n=-\sqrt{3}-4
Subtract 4 from both sides of the equation.
n^{2}+8n=-13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+8n-\left(-13\right)=-13-\left(-13\right)
Add 13 to both sides of the equation.
n^{2}+8n-\left(-13\right)=0
Subtracting -13 from itself leaves 0.
n^{2}+8n+13=0
Subtract -13 from 0.
n=\frac{-8±\sqrt{8^{2}-4\times 13}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-8±\sqrt{64-4\times 13}}{2}
Square 8.
n=\frac{-8±\sqrt{64-52}}{2}
Multiply -4 times 13.
n=\frac{-8±\sqrt{12}}{2}
Add 64 to -52.
n=\frac{-8±2\sqrt{3}}{2}
Take the square root of 12.
n=\frac{2\sqrt{3}-8}{2}
Now solve the equation n=\frac{-8±2\sqrt{3}}{2} when ± is plus. Add -8 to 2\sqrt{3}.
n=\sqrt{3}-4
Divide -8+2\sqrt{3} by 2.
n=\frac{-2\sqrt{3}-8}{2}
Now solve the equation n=\frac{-8±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -8.
n=-\sqrt{3}-4
Divide -8-2\sqrt{3} by 2.
n=\sqrt{3}-4 n=-\sqrt{3}-4
The equation is now solved.
n^{2}+8n=-13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+8n+4^{2}=-13+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+8n+16=-13+16
Square 4.
n^{2}+8n+16=3
Add -13 to 16.
\left(n+4\right)^{2}=3
Factor n^{2}+8n+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+4\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
n+4=\sqrt{3} n+4=-\sqrt{3}
Simplify.
n=\sqrt{3}-4 n=-\sqrt{3}-4
Subtract 4 from both sides of the equation.