Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

a+b=7 ab=12
To solve the equation, factor n^{2}+7n+12 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=3 b=4
The solution is the pair that gives sum 7.
\left(n+3\right)\left(n+4\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=-3 n=-4
To find equation solutions, solve n+3=0 and n+4=0.
a+b=7 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn+12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=3 b=4
The solution is the pair that gives sum 7.
\left(n^{2}+3n\right)+\left(4n+12\right)
Rewrite n^{2}+7n+12 as \left(n^{2}+3n\right)+\left(4n+12\right).
n\left(n+3\right)+4\left(n+3\right)
Factor out n in the first and 4 in the second group.
\left(n+3\right)\left(n+4\right)
Factor out common term n+3 by using distributive property.
n=-3 n=-4
To find equation solutions, solve n+3=0 and n+4=0.
n^{2}+7n+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-7±\sqrt{49-4\times 12}}{2}
Square 7.
n=\frac{-7±\sqrt{49-48}}{2}
Multiply -4 times 12.
n=\frac{-7±\sqrt{1}}{2}
Add 49 to -48.
n=\frac{-7±1}{2}
Take the square root of 1.
n=-\frac{6}{2}
Now solve the equation n=\frac{-7±1}{2} when ± is plus. Add -7 to 1.
n=-3
Divide -6 by 2.
n=-\frac{8}{2}
Now solve the equation n=\frac{-7±1}{2} when ± is minus. Subtract 1 from -7.
n=-4
Divide -8 by 2.
n=-3 n=-4
The equation is now solved.
n^{2}+7n+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+7n+12-12=-12
Subtract 12 from both sides of the equation.
n^{2}+7n=-12
Subtracting 12 from itself leaves 0.
n^{2}+7n+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+7n+\frac{49}{4}=-12+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+7n+\frac{49}{4}=\frac{1}{4}
Add -12 to \frac{49}{4}.
\left(n+\frac{7}{2}\right)^{2}=\frac{1}{4}
Factor n^{2}+7n+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
n+\frac{7}{2}=\frac{1}{2} n+\frac{7}{2}=-\frac{1}{2}
Simplify.
n=-3 n=-4
Subtract \frac{7}{2} from both sides of the equation.
x ^ 2 +7x +12 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -7 rs = 12
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{7}{2} - u s = -\frac{7}{2} + u
Two numbers r and s sum up to -7 exactly when the average of the two numbers is \frac{1}{2}*-7 = -\frac{7}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{7}{2} - u) (-\frac{7}{2} + u) = 12
To solve for unknown quantity u, substitute these in the product equation rs = 12
\frac{49}{4} - u^2 = 12
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 12-\frac{49}{4} = -\frac{1}{4}
Simplify the expression by subtracting \frac{49}{4} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{7}{2} - \frac{1}{2} = -4 s = -\frac{7}{2} + \frac{1}{2} = -3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.