Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+6n-600=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-6±\sqrt{6^{2}-4\times 1\left(-600\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 6 for b, and -600 for c in the quadratic formula.
n=\frac{-6±2\sqrt{609}}{2}
Do the calculations.
n=\sqrt{609}-3 n=-\sqrt{609}-3
Solve the equation n=\frac{-6±2\sqrt{609}}{2} when ± is plus and when ± is minus.
\left(n-\left(\sqrt{609}-3\right)\right)\left(n-\left(-\sqrt{609}-3\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
n-\left(\sqrt{609}-3\right)\geq 0 n-\left(-\sqrt{609}-3\right)\leq 0
For the product to be ≤0, one of the values n-\left(\sqrt{609}-3\right) and n-\left(-\sqrt{609}-3\right) has to be ≥0 and the other has to be ≤0. Consider the case when n-\left(\sqrt{609}-3\right)\geq 0 and n-\left(-\sqrt{609}-3\right)\leq 0.
n\in \emptyset
This is false for any n.
n-\left(-\sqrt{609}-3\right)\geq 0 n-\left(\sqrt{609}-3\right)\leq 0
Consider the case when n-\left(\sqrt{609}-3\right)\leq 0 and n-\left(-\sqrt{609}-3\right)\geq 0.
n\in \begin{bmatrix}-\left(\sqrt{609}+3\right),\sqrt{609}-3\end{bmatrix}
The solution satisfying both inequalities is n\in \left[-\left(\sqrt{609}+3\right),\sqrt{609}-3\right].
n\in \begin{bmatrix}-\sqrt{609}-3,\sqrt{609}-3\end{bmatrix}
The final solution is the union of the obtained solutions.