Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+5n=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+5n-2=2-2
Subtract 2 from both sides of the equation.
n^{2}+5n-2=0
Subtracting 2 from itself leaves 0.
n=\frac{-5±\sqrt{5^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-5±\sqrt{25-4\left(-2\right)}}{2}
Square 5.
n=\frac{-5±\sqrt{25+8}}{2}
Multiply -4 times -2.
n=\frac{-5±\sqrt{33}}{2}
Add 25 to 8.
n=\frac{\sqrt{33}-5}{2}
Now solve the equation n=\frac{-5±\sqrt{33}}{2} when ± is plus. Add -5 to \sqrt{33}.
n=\frac{-\sqrt{33}-5}{2}
Now solve the equation n=\frac{-5±\sqrt{33}}{2} when ± is minus. Subtract \sqrt{33} from -5.
n=\frac{\sqrt{33}-5}{2} n=\frac{-\sqrt{33}-5}{2}
The equation is now solved.
n^{2}+5n=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+5n+\left(\frac{5}{2}\right)^{2}=2+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+5n+\frac{25}{4}=2+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+5n+\frac{25}{4}=\frac{33}{4}
Add 2 to \frac{25}{4}.
\left(n+\frac{5}{2}\right)^{2}=\frac{33}{4}
Factor n^{2}+5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Take the square root of both sides of the equation.
n+\frac{5}{2}=\frac{\sqrt{33}}{2} n+\frac{5}{2}=-\frac{\sqrt{33}}{2}
Simplify.
n=\frac{\sqrt{33}-5}{2} n=\frac{-\sqrt{33}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.