Solve for n
n = \frac{\sqrt{1227721095641} - 150629}{10000} \approx 95.739676488
n=\frac{-\sqrt{1227721095641}-150629}{10000}\approx -125.865476488
Share
Copied to clipboard
n^{2}+30.1258n-12050.32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-30.1258±\sqrt{30.1258^{2}-4\left(-12050.32\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 30.1258 for b, and -12050.32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-30.1258±\sqrt{907.56382564-4\left(-12050.32\right)}}{2}
Square 30.1258 by squaring both the numerator and the denominator of the fraction.
n=\frac{-30.1258±\sqrt{907.56382564+48201.28}}{2}
Multiply -4 times -12050.32.
n=\frac{-30.1258±\sqrt{49108.84382564}}{2}
Add 907.56382564 to 48201.28 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-30.1258±\frac{\sqrt{1227721095641}}{5000}}{2}
Take the square root of 49108.84382564.
n=\frac{\sqrt{1227721095641}-150629}{2\times 5000}
Now solve the equation n=\frac{-30.1258±\frac{\sqrt{1227721095641}}{5000}}{2} when ± is plus. Add -30.1258 to \frac{\sqrt{1227721095641}}{5000}.
n=\frac{\sqrt{1227721095641}-150629}{10000}
Divide \frac{-150629+\sqrt{1227721095641}}{5000} by 2.
n=\frac{-\sqrt{1227721095641}-150629}{2\times 5000}
Now solve the equation n=\frac{-30.1258±\frac{\sqrt{1227721095641}}{5000}}{2} when ± is minus. Subtract \frac{\sqrt{1227721095641}}{5000} from -30.1258.
n=\frac{-\sqrt{1227721095641}-150629}{10000}
Divide \frac{-150629-\sqrt{1227721095641}}{5000} by 2.
n=\frac{\sqrt{1227721095641}-150629}{10000} n=\frac{-\sqrt{1227721095641}-150629}{10000}
The equation is now solved.
n^{2}+30.1258n-12050.32=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+30.1258n-12050.32-\left(-12050.32\right)=-\left(-12050.32\right)
Add 12050.32 to both sides of the equation.
n^{2}+30.1258n=-\left(-12050.32\right)
Subtracting -12050.32 from itself leaves 0.
n^{2}+30.1258n=12050.32
Subtract -12050.32 from 0.
n^{2}+30.1258n+15.0629^{2}=12050.32+15.0629^{2}
Divide 30.1258, the coefficient of the x term, by 2 to get 15.0629. Then add the square of 15.0629 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+30.1258n+226.89095641=12050.32+226.89095641
Square 15.0629 by squaring both the numerator and the denominator of the fraction.
n^{2}+30.1258n+226.89095641=12277.21095641
Add 12050.32 to 226.89095641 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+15.0629\right)^{2}=12277.21095641
Factor n^{2}+30.1258n+226.89095641. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+15.0629\right)^{2}}=\sqrt{12277.21095641}
Take the square root of both sides of the equation.
n+15.0629=\frac{\sqrt{1227721095641}}{10000} n+15.0629=-\frac{\sqrt{1227721095641}}{10000}
Simplify.
n=\frac{\sqrt{1227721095641}-150629}{10000} n=\frac{-\sqrt{1227721095641}-150629}{10000}
Subtract 15.0629 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}