Solve for n
n = -\frac{9}{2} = -4\frac{1}{2} = -4.5
n = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
n^{2}+3n=\frac{27}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+3n-\frac{27}{4}=\frac{27}{4}-\frac{27}{4}
Subtract \frac{27}{4} from both sides of the equation.
n^{2}+3n-\frac{27}{4}=0
Subtracting \frac{27}{4} from itself leaves 0.
n=\frac{-3±\sqrt{3^{2}-4\left(-\frac{27}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -\frac{27}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-3±\sqrt{9-4\left(-\frac{27}{4}\right)}}{2}
Square 3.
n=\frac{-3±\sqrt{9+27}}{2}
Multiply -4 times -\frac{27}{4}.
n=\frac{-3±\sqrt{36}}{2}
Add 9 to 27.
n=\frac{-3±6}{2}
Take the square root of 36.
n=\frac{3}{2}
Now solve the equation n=\frac{-3±6}{2} when ± is plus. Add -3 to 6.
n=-\frac{9}{2}
Now solve the equation n=\frac{-3±6}{2} when ± is minus. Subtract 6 from -3.
n=\frac{3}{2} n=-\frac{9}{2}
The equation is now solved.
n^{2}+3n=\frac{27}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+3n+\left(\frac{3}{2}\right)^{2}=\frac{27}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+3n+\frac{9}{4}=\frac{27+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+3n+\frac{9}{4}=9
Add \frac{27}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{3}{2}\right)^{2}=9
Factor n^{2}+3n+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{2}\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
n+\frac{3}{2}=3 n+\frac{3}{2}=-3
Simplify.
n=\frac{3}{2} n=-\frac{9}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}