Factor
\left(n-\left(-\sqrt{3}-3\right)\right)\left(n-\left(\sqrt{3}-3\right)\right)
Evaluate
n^{2}+6n+6
Share
Copied to clipboard
factor(n^{2}+6n+6)
Combine 3n and 3n to get 6n.
n^{2}+6n+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-6±\sqrt{6^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-6±\sqrt{36-4\times 6}}{2}
Square 6.
n=\frac{-6±\sqrt{36-24}}{2}
Multiply -4 times 6.
n=\frac{-6±\sqrt{12}}{2}
Add 36 to -24.
n=\frac{-6±2\sqrt{3}}{2}
Take the square root of 12.
n=\frac{2\sqrt{3}-6}{2}
Now solve the equation n=\frac{-6±2\sqrt{3}}{2} when ± is plus. Add -6 to 2\sqrt{3}.
n=\sqrt{3}-3
Divide -6+2\sqrt{3} by 2.
n=\frac{-2\sqrt{3}-6}{2}
Now solve the equation n=\frac{-6±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -6.
n=-\sqrt{3}-3
Divide -6-2\sqrt{3} by 2.
n^{2}+6n+6=\left(n-\left(\sqrt{3}-3\right)\right)\left(n-\left(-\sqrt{3}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3+\sqrt{3} for x_{1} and -3-\sqrt{3} for x_{2}.
n^{2}+6n+6
Combine 3n and 3n to get 6n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}