Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+24n-576\leq 0
Calculate 24 to the power of 2 and get 576.
n^{2}+24n-576=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-24±\sqrt{24^{2}-4\times 1\left(-576\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 24 for b, and -576 for c in the quadratic formula.
n=\frac{-24±24\sqrt{5}}{2}
Do the calculations.
n=12\sqrt{5}-12 n=-12\sqrt{5}-12
Solve the equation n=\frac{-24±24\sqrt{5}}{2} when ± is plus and when ± is minus.
\left(n-\left(12\sqrt{5}-12\right)\right)\left(n-\left(-12\sqrt{5}-12\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
n-\left(12\sqrt{5}-12\right)\geq 0 n-\left(-12\sqrt{5}-12\right)\leq 0
For the product to be ≤0, one of the values n-\left(12\sqrt{5}-12\right) and n-\left(-12\sqrt{5}-12\right) has to be ≥0 and the other has to be ≤0. Consider the case when n-\left(12\sqrt{5}-12\right)\geq 0 and n-\left(-12\sqrt{5}-12\right)\leq 0.
n\in \emptyset
This is false for any n.
n-\left(-12\sqrt{5}-12\right)\geq 0 n-\left(12\sqrt{5}-12\right)\leq 0
Consider the case when n-\left(12\sqrt{5}-12\right)\leq 0 and n-\left(-12\sqrt{5}-12\right)\geq 0.
n\in \begin{bmatrix}-12\sqrt{5}-12,12\sqrt{5}-12\end{bmatrix}
The solution satisfying both inequalities is n\in \left[-12\sqrt{5}-12,12\sqrt{5}-12\right].
n\in \begin{bmatrix}-12\sqrt{5}-12,12\sqrt{5}-12\end{bmatrix}
The final solution is the union of the obtained solutions.