Solve for n
n=\frac{1}{2}-es
Solve for s
s=\frac{1-2n}{2e}
Share
Copied to clipboard
n=\frac{1}{8}+\frac{3}{8}-\frac{6\times 2+1}{2}\times \frac{2}{13}es
Calculate 2 to the power of -3 and get \frac{1}{8}.
n=\frac{1}{2}-\frac{6\times 2+1}{2}\times \frac{2}{13}es
Add \frac{1}{8} and \frac{3}{8} to get \frac{1}{2}.
n=\frac{1}{2}-\frac{12+1}{2}\times \frac{2}{13}es
Multiply 6 and 2 to get 12.
n=\frac{1}{2}-\frac{13}{2}\times \frac{2}{13}es
Add 12 and 1 to get 13.
n=\frac{1}{2}-es
Multiply \frac{13}{2} and \frac{2}{13} to get 1.
n=-es+\frac{1}{2}
Reorder the terms.
n=\frac{1}{8}+\frac{3}{8}-\frac{6\times 2+1}{2}\times \frac{2}{13}es
Calculate 2 to the power of -3 and get \frac{1}{8}.
n=\frac{1}{2}-\frac{6\times 2+1}{2}\times \frac{2}{13}es
Add \frac{1}{8} and \frac{3}{8} to get \frac{1}{2}.
n=\frac{1}{2}-\frac{12+1}{2}\times \frac{2}{13}es
Multiply 6 and 2 to get 12.
n=\frac{1}{2}-\frac{13}{2}\times \frac{2}{13}es
Add 12 and 1 to get 13.
n=\frac{1}{2}-es
Multiply \frac{13}{2} and \frac{2}{13} to get 1.
\frac{1}{2}-es=n
Swap sides so that all variable terms are on the left hand side.
-es=n-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\left(-e\right)s=n-\frac{1}{2}
The equation is in standard form.
\frac{\left(-e\right)s}{-e}=\frac{n-\frac{1}{2}}{-e}
Divide both sides by -e.
s=\frac{n-\frac{1}{2}}{-e}
Dividing by -e undoes the multiplication by -e.
s=-\frac{2n-1}{2e}
Divide n-\frac{1}{2} by -e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}