Solve for n
n = \frac{226347}{6991} = 32\frac{2635}{6991} \approx 32.376913174
Assign n
n≔\frac{226347}{6991}
Share
Copied to clipboard
n=\frac{0.857375\times 0.5\times 0.5\times 33}{33\times 0.05^{3}+0.95^{3}\times 0.5\times 0.5}
Calculate 0.95 to the power of 3 and get 0.857375.
n=\frac{0.4286875\times 0.5\times 33}{33\times 0.05^{3}+0.95^{3}\times 0.5\times 0.5}
Multiply 0.857375 and 0.5 to get 0.4286875.
n=\frac{0.21434375\times 33}{33\times 0.05^{3}+0.95^{3}\times 0.5\times 0.5}
Multiply 0.4286875 and 0.5 to get 0.21434375.
n=\frac{7.07334375}{33\times 0.05^{3}+0.95^{3}\times 0.5\times 0.5}
Multiply 0.21434375 and 33 to get 7.07334375.
n=\frac{7.07334375}{33\times 0.000125+0.95^{3}\times 0.5\times 0.5}
Calculate 0.05 to the power of 3 and get 0.000125.
n=\frac{7.07334375}{0.004125+0.95^{3}\times 0.5\times 0.5}
Multiply 33 and 0.000125 to get 0.004125.
n=\frac{7.07334375}{0.004125+0.857375\times 0.5\times 0.5}
Calculate 0.95 to the power of 3 and get 0.857375.
n=\frac{7.07334375}{0.004125+0.4286875\times 0.5}
Multiply 0.857375 and 0.5 to get 0.4286875.
n=\frac{7.07334375}{0.004125+0.21434375}
Multiply 0.4286875 and 0.5 to get 0.21434375.
n=\frac{7.07334375}{0.21846875}
Add 0.004125 and 0.21434375 to get 0.21846875.
n=\frac{707334375}{21846875}
Expand \frac{7.07334375}{0.21846875} by multiplying both numerator and the denominator by 100000000.
n=\frac{226347}{6991}
Reduce the fraction \frac{707334375}{21846875} to lowest terms by extracting and canceling out 3125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}