Solve for n
n=\left(5\left(z+\left(-1+i\right)\right)^{2}-4\right)\left(z+\left(-1+i\right)\right)^{4}
z\neq 1-i
Quiz
Complex Number
5 problems similar to:
n : ( z - 1 + i ) ^ { 4 } - 5 ( z - 1 + i ) ^ { 2 } + 4 = 0
Share
Copied to clipboard
\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(\frac{n}{\left(z-1+i\right)^{4}}-5\left(z-1+i\right)^{2}\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 4=0
Multiply both sides of the equation by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4.
\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(\frac{n}{\left(z-1+i\right)^{4}}-5\left(z^{2}+\left(-2+2i\right)z-2i\right)\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 4=0
Square z-1+i.
\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(\frac{n}{\left(z-1+i\right)^{4}}-5z^{2}+\left(10-10i\right)z+10i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 4=0
Use the distributive property to multiply -5 by z^{2}+\left(-2+2i\right)z-2i.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+150iz^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-200-200i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+300z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-120+120i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 4=0
Use the distributive property to multiply z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 by \frac{n}{\left(z-1+i\right)^{4}}-5z^{2}+\left(10-10i\right)z+10i and combine like terms.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+150iz^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-200-200i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+300z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-120+120i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i+4z^{4}+\left(-16+16i\right)z^{3}-48iz^{2}+\left(32+32i\right)z-16=0
Use the distributive property to multiply z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 by 4.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-200-200i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+300z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-120+120i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i+\left(-16+16i\right)z^{3}-48iz^{2}+\left(32+32i\right)z-16=0
Combine 150iz^{4} and 4z^{4} to get \left(4+150i\right)z^{4}.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+300z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-120+120i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-48iz^{2}+\left(32+32i\right)z-16=0
Combine \left(-200-200i\right)z^{3} and \left(-16+16i\right)z^{3} to get \left(-216-184i\right)z^{3}.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-120+120i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i+\left(32+32i\right)z-16=0
Combine 300z^{2} and -48iz^{2} to get \left(300-48i\right)z^{2}.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}-5z^{6}+\left(30-30i\right)z^{5}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=0
Combine \left(-120+120i\right)z and \left(32+32i\right)z to get \left(-88+152i\right)z.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(30-30i\right)z^{5}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}
Add 5z^{6} to both sides. Anything plus zero gives itself.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(4+150i\right)z^{4}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}-\left(30-30i\right)z^{5}
Subtract \left(30-30i\right)z^{5} from both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-216-184i\right)z^{3}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}
Subtract \left(4+150i\right)z^{4} from both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(300-48i\right)z^{2}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}
Subtract \left(-216-184i\right)z^{3} from both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-88+152i\right)z-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}
Subtract \left(300-48i\right)z^{2} from both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}-4\times \frac{n}{\left(z-1+i\right)^{4}}-40i-16=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z
Subtract \left(-88+152i\right)z from both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}-4\times \frac{n}{\left(z-1+i\right)^{4}}-16=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z+40i
Add 40i to both sides.
z^{4}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(-4+4i\right)z^{3}\times \frac{n}{\left(z-1+i\right)^{4}}-12iz^{2}\times \frac{n}{\left(z-1+i\right)^{4}}+\left(8+8i\right)z\times \frac{n}{\left(z-1+i\right)^{4}}-4\times \frac{n}{\left(z-1+i\right)^{4}}=5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z+40i+16
Add 16 to both sides.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}-\left(30-30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply both sides of the equation by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}+\left(-30+30i\right)z^{5}-\left(4+150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply -1 and 30-30i to get -30+30i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}+\left(-30+30i\right)z^{5}+\left(-4-150i\right)z^{4}-\left(-216-184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply -1 and 4+150i to get -4-150i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}+\left(-30+30i\right)z^{5}+\left(-4-150i\right)z^{4}+\left(216+184i\right)z^{3}-\left(300-48i\right)z^{2}-\left(-88+152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply -1 and -216-184i to get 216+184i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}+\left(-30+30i\right)z^{5}+\left(-4-150i\right)z^{4}+\left(216+184i\right)z^{3}+\left(-300+48i\right)z^{2}-\left(-88+152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply -1 and 300-48i to get -300+48i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\left(5z^{6}+\left(-30+30i\right)z^{5}+\left(-4-150i\right)z^{4}+\left(216+184i\right)z^{3}+\left(-300+48i\right)z^{2}+\left(88-152i\right)z\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Multiply -1 and -88+152i to get 88-152i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8360i\right)z^{4}+\left(-5472-3808i\right)z^{3}+\left(3120-704i\right)z^{2}+\left(-352+608i\right)z+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times \left(40i\right)+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Use the distributive property to multiply z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 by 5z^{6}+\left(-30+30i\right)z^{5}+\left(-4-150i\right)z^{4}+\left(216+184i\right)z^{3}+\left(-300+48i\right)z^{2}+\left(88-152i\right)z and combine like terms.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8360i\right)z^{4}+\left(-5472-3808i\right)z^{3}+\left(3120-704i\right)z^{2}+\left(-352+608i\right)z+40iz^{4}+\left(-160-160i\right)z^{3}+480z^{2}+\left(-320+320i\right)z-160i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Use the distributive property to multiply z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 by 40i.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8400i\right)z^{4}+\left(-5472-3808i\right)z^{3}+\left(3120-704i\right)z^{2}+\left(-352+608i\right)z+\left(-160-160i\right)z^{3}+480z^{2}+\left(-320+320i\right)z-160i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Combine \left(1104+8360i\right)z^{4} and 40iz^{4} to get \left(1104+8400i\right)z^{4}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8400i\right)z^{4}+\left(-5632-3968i\right)z^{3}+\left(3120-704i\right)z^{2}+\left(-352+608i\right)z+480z^{2}+\left(-320+320i\right)z-160i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Combine \left(-5472-3808i\right)z^{3} and \left(-160-160i\right)z^{3} to get \left(-5632-3968i\right)z^{3}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8400i\right)z^{4}+\left(-5632-3968i\right)z^{3}+\left(3600-704i\right)z^{2}+\left(-352+608i\right)z+\left(-320+320i\right)z-160i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Combine \left(3120-704i\right)z^{2} and 480z^{2} to get \left(3600-704i\right)z^{2}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8400i\right)z^{4}+\left(-5632-3968i\right)z^{3}+\left(3600-704i\right)z^{2}+\left(-672+928i\right)z-160i+\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)\times 16
Combine \left(-352+608i\right)z and \left(-320+320i\right)z to get \left(-672+928i\right)z.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1104+8400i\right)z^{4}+\left(-5632-3968i\right)z^{3}+\left(3600-704i\right)z^{2}+\left(-672+928i\right)z-160i+16z^{4}+\left(-64+64i\right)z^{3}-192iz^{2}+\left(128+128i\right)z-64
Use the distributive property to multiply z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 by 16.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5632-3968i\right)z^{3}+\left(3600-704i\right)z^{2}+\left(-672+928i\right)z-160i+\left(-64+64i\right)z^{3}-192iz^{2}+\left(128+128i\right)z-64
Combine \left(1104+8400i\right)z^{4} and 16z^{4} to get \left(1120+8400i\right)z^{4}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-704i\right)z^{2}+\left(-672+928i\right)z-160i-192iz^{2}+\left(128+128i\right)z-64
Combine \left(-5632-3968i\right)z^{3} and \left(-64+64i\right)z^{3} to get \left(-5696-3904i\right)z^{3}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-672+928i\right)z-160i+\left(128+128i\right)z-64
Combine \left(3600-704i\right)z^{2} and -192iz^{2} to get \left(3600-896i\right)z^{2}.
z^{4}n+\left(-4+4i\right)z^{3}n-12iz^{2}n+\left(8+8i\right)zn-4n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-544+1056i\right)z-160i-64
Combine \left(-672+928i\right)z and \left(128+128i\right)z to get \left(-544+1056i\right)z.
\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-544+1056i\right)z-160i-64
Combine all terms containing n.
\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)n=5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-544+1056i\right)z+\left(-64-160i\right)
The equation is in standard form.
\frac{\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)n}{z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4}=\frac{5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-544+1056i\right)z+\left(-64-160i\right)}{z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4}
Divide both sides by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4.
n=\frac{5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-544+1056i\right)z+\left(-64-160i\right)}{z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4}
Dividing by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4 undoes the multiplication by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4.
n=\left(5z^{2}+\left(-10+10i\right)z+\left(-4-10i\right)\right)\left(z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4\right)
Divide 5z^{10}+\left(-50+50i\right)z^{9}+\left(-4-450i\right)z^{8}+\left(1232+1168i\right)z^{7}+\left(-544+1056i\right)z+\left(-4200+224i\right)z^{6}+\left(4592-5488i\right)z^{5}+\left(1120+8400i\right)z^{4}+\left(-5696-3904i\right)z^{3}+\left(3600-896i\right)z^{2}+\left(-64-160i\right) by z^{4}+\left(-4+4i\right)z^{3}-12iz^{2}+\left(8+8i\right)z-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}