Solve for n
n=-26
n=25
Share
Copied to clipboard
n+n^{2}-650=0
Subtract 650 from both sides.
n^{2}+n-650=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-650
To solve the equation, factor n^{2}+n-650 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
Calculate the sum for each pair.
a=-25 b=26
The solution is the pair that gives sum 1.
\left(n-25\right)\left(n+26\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=25 n=-26
To find equation solutions, solve n-25=0 and n+26=0.
n+n^{2}-650=0
Subtract 650 from both sides.
n^{2}+n-650=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=1\left(-650\right)=-650
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn-650. To find a and b, set up a system to be solved.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
Calculate the sum for each pair.
a=-25 b=26
The solution is the pair that gives sum 1.
\left(n^{2}-25n\right)+\left(26n-650\right)
Rewrite n^{2}+n-650 as \left(n^{2}-25n\right)+\left(26n-650\right).
n\left(n-25\right)+26\left(n-25\right)
Factor out n in the first and 26 in the second group.
\left(n-25\right)\left(n+26\right)
Factor out common term n-25 by using distributive property.
n=25 n=-26
To find equation solutions, solve n-25=0 and n+26=0.
n^{2}+n=650
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n^{2}+n-650=650-650
Subtract 650 from both sides of the equation.
n^{2}+n-650=0
Subtracting 650 from itself leaves 0.
n=\frac{-1±\sqrt{1^{2}-4\left(-650\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -650 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-650\right)}}{2}
Square 1.
n=\frac{-1±\sqrt{1+2600}}{2}
Multiply -4 times -650.
n=\frac{-1±\sqrt{2601}}{2}
Add 1 to 2600.
n=\frac{-1±51}{2}
Take the square root of 2601.
n=\frac{50}{2}
Now solve the equation n=\frac{-1±51}{2} when ± is plus. Add -1 to 51.
n=25
Divide 50 by 2.
n=-\frac{52}{2}
Now solve the equation n=\frac{-1±51}{2} when ± is minus. Subtract 51 from -1.
n=-26
Divide -52 by 2.
n=25 n=-26
The equation is now solved.
n^{2}+n=650
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=650+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+n+\frac{1}{4}=650+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+n+\frac{1}{4}=\frac{2601}{4}
Add 650 to \frac{1}{4}.
\left(n+\frac{1}{2}\right)^{2}=\frac{2601}{4}
Factor n^{2}+n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2601}{4}}
Take the square root of both sides of the equation.
n+\frac{1}{2}=\frac{51}{2} n+\frac{1}{2}=-\frac{51}{2}
Simplify.
n=25 n=-26
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}