Solve for n
n = -\frac{19}{7} = -2\frac{5}{7} \approx -2.714285714
Share
Copied to clipboard
2n+1=9\left(n+2\right)+2
Combine n and n to get 2n.
2n+1=9n+18+2
Use the distributive property to multiply 9 by n+2.
2n+1=9n+20
Add 18 and 2 to get 20.
2n+1-9n=20
Subtract 9n from both sides.
-7n+1=20
Combine 2n and -9n to get -7n.
-7n=20-1
Subtract 1 from both sides.
-7n=19
Subtract 1 from 20 to get 19.
n=\frac{19}{-7}
Divide both sides by -7.
n=-\frac{19}{7}
Fraction \frac{19}{-7} can be rewritten as -\frac{19}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}