Solve for m
m=-\frac{z+1}{z^{2}}
z\neq 0
Solve for z (complex solution)
\left\{\begin{matrix}z=\frac{\sqrt{1-4m}-1}{2m}\text{; }z=-\frac{\sqrt{1-4m}+1}{2m}\text{, }&m\neq 0\\z=-1\text{, }&m=0\end{matrix}\right.
Solve for z
\left\{\begin{matrix}z=\frac{\sqrt{1-4m}-1}{2m}\text{; }z=-\frac{\sqrt{1-4m}+1}{2m}\text{, }&m\neq 0\text{ and }m\leq \frac{1}{4}\\z=-1\text{, }&m=0\end{matrix}\right.
Share
Copied to clipboard
mz^{2}+1=-z
Subtract z from both sides. Anything subtracted from zero gives its negation.
mz^{2}=-z-1
Subtract 1 from both sides.
z^{2}m=-z-1
The equation is in standard form.
\frac{z^{2}m}{z^{2}}=\frac{-z-1}{z^{2}}
Divide both sides by z^{2}.
m=\frac{-z-1}{z^{2}}
Dividing by z^{2} undoes the multiplication by z^{2}.
m=-\frac{z+1}{z^{2}}
Divide -z-1 by z^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}