Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{6-xy}{y^{2}+1}\text{, }&y\neq -i\text{ and }y\neq i\\m\in \mathrm{C}\text{, }&\left(x=-6i\text{ and }y=i\right)\text{ or }\left(x=6i\text{ and }y=-i\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{my^{2}+m+6}{y}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&m=-6\text{ and }y=0\end{matrix}\right.
Solve for m
m=-\frac{6-xy}{y^{2}+1}
Solve for x
\left\{\begin{matrix}x=\frac{my^{2}+m+6}{y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&m=-6\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
my^{2}+m+6=xy
Add xy to both sides. Anything plus zero gives itself.
my^{2}+m=xy-6
Subtract 6 from both sides.
\left(y^{2}+1\right)m=xy-6
Combine all terms containing m.
\frac{\left(y^{2}+1\right)m}{y^{2}+1}=\frac{xy-6}{y^{2}+1}
Divide both sides by y^{2}+1.
m=\frac{xy-6}{y^{2}+1}
Dividing by y^{2}+1 undoes the multiplication by y^{2}+1.
-xy+m+6=-my^{2}
Subtract my^{2} from both sides. Anything subtracted from zero gives its negation.
-xy+6=-my^{2}-m
Subtract m from both sides.
-xy=-my^{2}-m-6
Subtract 6 from both sides.
\left(-y\right)x=-my^{2}-m-6
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{-my^{2}-m-6}{-y}
Divide both sides by -y.
x=\frac{-my^{2}-m-6}{-y}
Dividing by -y undoes the multiplication by -y.
x=my+\frac{m+6}{y}
Divide -my^{2}-m-6 by -y.
my^{2}+m+6=xy
Add xy to both sides. Anything plus zero gives itself.
my^{2}+m=xy-6
Subtract 6 from both sides.
\left(y^{2}+1\right)m=xy-6
Combine all terms containing m.
\frac{\left(y^{2}+1\right)m}{y^{2}+1}=\frac{xy-6}{y^{2}+1}
Divide both sides by y^{2}+1.
m=\frac{xy-6}{y^{2}+1}
Dividing by y^{2}+1 undoes the multiplication by y^{2}+1.
-xy+m+6=-my^{2}
Subtract my^{2} from both sides. Anything subtracted from zero gives its negation.
-xy+6=-my^{2}-m
Subtract m from both sides.
-xy=-my^{2}-m-6
Subtract 6 from both sides.
\left(-y\right)x=-my^{2}-m-6
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{-my^{2}-m-6}{-y}
Divide both sides by -y.
x=\frac{-my^{2}-m-6}{-y}
Dividing by -y undoes the multiplication by -y.
x=my+\frac{m+6}{y}
Divide -my^{2}-m-6 by -y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}