Solve for m (complex solution)
\left\{\begin{matrix}m=-\frac{n}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=-2\text{ or }\left(n=0\text{ and }x=0\right)\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}\\n=-mx\text{, }&\text{unconditionally}\\n\in \mathrm{C}\text{, }&x=-2\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\frac{n}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=-2\text{ or }\left(n=0\text{ and }x=0\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=-mx\text{, }&\text{unconditionally}\\n\in \mathrm{R}\text{, }&x=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
mx^{2}+2mx+nx+2n=0
Use the distributive property to multiply 2m+n by x.
mx^{2}+2mx+2n=-nx
Subtract nx from both sides. Anything subtracted from zero gives its negation.
mx^{2}+2mx=-nx-2n
Subtract 2n from both sides.
\left(x^{2}+2x\right)m=-nx-2n
Combine all terms containing m.
\frac{\left(x^{2}+2x\right)m}{x^{2}+2x}=-\frac{n\left(x+2\right)}{x^{2}+2x}
Divide both sides by x^{2}+2x.
m=-\frac{n\left(x+2\right)}{x^{2}+2x}
Dividing by x^{2}+2x undoes the multiplication by x^{2}+2x.
m=-\frac{n}{x}
Divide -n\left(2+x\right) by x^{2}+2x.
mx^{2}+2mx+nx+2n=0
Use the distributive property to multiply 2m+n by x.
2mx+nx+2n=-mx^{2}
Subtract mx^{2} from both sides. Anything subtracted from zero gives its negation.
nx+2n=-mx^{2}-2mx
Subtract 2mx from both sides.
\left(x+2\right)n=-mx^{2}-2mx
Combine all terms containing n.
\frac{\left(x+2\right)n}{x+2}=-\frac{mx\left(x+2\right)}{x+2}
Divide both sides by 2+x.
n=-\frac{mx\left(x+2\right)}{x+2}
Dividing by 2+x undoes the multiplication by 2+x.
n=-mx
Divide -mx\left(2+x\right) by 2+x.
mx^{2}+2mx+nx+2n=0
Use the distributive property to multiply 2m+n by x.
mx^{2}+2mx+2n=-nx
Subtract nx from both sides. Anything subtracted from zero gives its negation.
mx^{2}+2mx=-nx-2n
Subtract 2n from both sides.
\left(x^{2}+2x\right)m=-nx-2n
Combine all terms containing m.
\frac{\left(x^{2}+2x\right)m}{x^{2}+2x}=-\frac{n\left(x+2\right)}{x^{2}+2x}
Divide both sides by x^{2}+2x.
m=-\frac{n\left(x+2\right)}{x^{2}+2x}
Dividing by x^{2}+2x undoes the multiplication by x^{2}+2x.
m=-\frac{n}{x}
Divide -n\left(2+x\right) by x^{2}+2x.
mx^{2}+2mx+nx+2n=0
Use the distributive property to multiply 2m+n by x.
2mx+nx+2n=-mx^{2}
Subtract mx^{2} from both sides. Anything subtracted from zero gives its negation.
nx+2n=-mx^{2}-2mx
Subtract 2mx from both sides.
\left(x+2\right)n=-mx^{2}-2mx
Combine all terms containing n.
\frac{\left(x+2\right)n}{x+2}=-\frac{mx\left(x+2\right)}{x+2}
Divide both sides by 2+x.
n=-\frac{mx\left(x+2\right)}{x+2}
Dividing by 2+x undoes the multiplication by 2+x.
n=-mx
Divide -mx\left(2+x\right) by 2+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}