Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{7y}{2x}+\frac{15}{2}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{7y}{2m-15}\text{, }&m\neq \frac{15}{2}\\x\in \mathrm{C}\text{, }&y=0\text{ and }m=\frac{15}{2}\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{7y}{2x}+\frac{15}{2}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{7y}{2m-15}\text{, }&m\neq \frac{15}{2}\\x\in \mathrm{R}\text{, }&y=0\text{ and }m=\frac{15}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2mx+my-my-15x-7y=0
Combine mx and mx to get 2mx.
2mx-15x-7y=0
Combine my and -my to get 0.
2mx-7y=15x
Add 15x to both sides. Anything plus zero gives itself.
2mx=15x+7y
Add 7y to both sides.
2xm=15x+7y
The equation is in standard form.
\frac{2xm}{2x}=\frac{15x+7y}{2x}
Divide both sides by 2x.
m=\frac{15x+7y}{2x}
Dividing by 2x undoes the multiplication by 2x.
m=\frac{7y}{2x}+\frac{15}{2}
Divide 15x+7y by 2x.
2mx+my-my-15x-7y=0
Combine mx and mx to get 2mx.
2mx-15x-7y=0
Combine my and -my to get 0.
2mx-15x=7y
Add 7y to both sides. Anything plus zero gives itself.
\left(2m-15\right)x=7y
Combine all terms containing x.
\frac{\left(2m-15\right)x}{2m-15}=\frac{7y}{2m-15}
Divide both sides by 2m-15.
x=\frac{7y}{2m-15}
Dividing by 2m-15 undoes the multiplication by 2m-15.
2mx+my-my-15x-7y=0
Combine mx and mx to get 2mx.
2mx-15x-7y=0
Combine my and -my to get 0.
2mx-7y=15x
Add 15x to both sides. Anything plus zero gives itself.
2mx=15x+7y
Add 7y to both sides.
2xm=15x+7y
The equation is in standard form.
\frac{2xm}{2x}=\frac{15x+7y}{2x}
Divide both sides by 2x.
m=\frac{15x+7y}{2x}
Dividing by 2x undoes the multiplication by 2x.
m=\frac{7y}{2x}+\frac{15}{2}
Divide 15x+7y by 2x.
2mx+my-my-15x-7y=0
Combine mx and mx to get 2mx.
2mx-15x-7y=0
Combine my and -my to get 0.
2mx-15x=7y
Add 7y to both sides. Anything plus zero gives itself.
\left(2m-15\right)x=7y
Combine all terms containing x.
\frac{\left(2m-15\right)x}{2m-15}=\frac{7y}{2m-15}
Divide both sides by 2m-15.
x=\frac{7y}{2m-15}
Dividing by 2m-15 undoes the multiplication by 2m-15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}