Solve for m_1
\left\{\begin{matrix}m_{1}=\frac{m_{2}\left(v_{0}-w_{2}\right)}{w_{1}}\text{, }&w_{1}\neq 0\\m_{1}\in \mathrm{R}\text{, }&\left(m_{2}=0\text{ or }v_{0}=w_{2}\right)\text{ and }w_{1}=0\end{matrix}\right.
Solve for m_2
\left\{\begin{matrix}m_{2}=\frac{m_{1}w_{1}}{v_{0}-w_{2}}\text{, }&v_{0}\neq w_{2}\\m_{2}\in \mathrm{R}\text{, }&\left(w_{1}=0\text{ or }m_{1}=0\right)\text{ and }v_{0}=w_{2}\end{matrix}\right.
Share
Copied to clipboard
m_{1}w_{1}+m_{2}w_{2}=m_{2}v_{0}
Swap sides so that all variable terms are on the left hand side.
m_{1}w_{1}=m_{2}v_{0}-m_{2}w_{2}
Subtract m_{2}w_{2} from both sides.
w_{1}m_{1}=m_{2}v_{0}-m_{2}w_{2}
The equation is in standard form.
\frac{w_{1}m_{1}}{w_{1}}=\frac{m_{2}\left(v_{0}-w_{2}\right)}{w_{1}}
Divide both sides by w_{1}.
m_{1}=\frac{m_{2}\left(v_{0}-w_{2}\right)}{w_{1}}
Dividing by w_{1} undoes the multiplication by w_{1}.
m_{2}v_{0}-m_{2}w_{2}=m_{1}w_{1}
Subtract m_{2}w_{2} from both sides.
\left(v_{0}-w_{2}\right)m_{2}=m_{1}w_{1}
Combine all terms containing m_{2}.
\frac{\left(v_{0}-w_{2}\right)m_{2}}{v_{0}-w_{2}}=\frac{m_{1}w_{1}}{v_{0}-w_{2}}
Divide both sides by v_{0}-w_{2}.
m_{2}=\frac{m_{1}w_{1}}{v_{0}-w_{2}}
Dividing by v_{0}-w_{2} undoes the multiplication by v_{0}-w_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}