Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(-10m-61m^{2}+30)
Combine m and -11m to get -10m.
-61m^{2}-10m+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-61\right)\times 30}}{2\left(-61\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-10\right)±\sqrt{100-4\left(-61\right)\times 30}}{2\left(-61\right)}
Square -10.
m=\frac{-\left(-10\right)±\sqrt{100+244\times 30}}{2\left(-61\right)}
Multiply -4 times -61.
m=\frac{-\left(-10\right)±\sqrt{100+7320}}{2\left(-61\right)}
Multiply 244 times 30.
m=\frac{-\left(-10\right)±\sqrt{7420}}{2\left(-61\right)}
Add 100 to 7320.
m=\frac{-\left(-10\right)±2\sqrt{1855}}{2\left(-61\right)}
Take the square root of 7420.
m=\frac{10±2\sqrt{1855}}{2\left(-61\right)}
The opposite of -10 is 10.
m=\frac{10±2\sqrt{1855}}{-122}
Multiply 2 times -61.
m=\frac{2\sqrt{1855}+10}{-122}
Now solve the equation m=\frac{10±2\sqrt{1855}}{-122} when ± is plus. Add 10 to 2\sqrt{1855}.
m=\frac{-\sqrt{1855}-5}{61}
Divide 10+2\sqrt{1855} by -122.
m=\frac{10-2\sqrt{1855}}{-122}
Now solve the equation m=\frac{10±2\sqrt{1855}}{-122} when ± is minus. Subtract 2\sqrt{1855} from 10.
m=\frac{\sqrt{1855}-5}{61}
Divide 10-2\sqrt{1855} by -122.
-61m^{2}-10m+30=-61\left(m-\frac{-\sqrt{1855}-5}{61}\right)\left(m-\frac{\sqrt{1855}-5}{61}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5-\sqrt{1855}}{61} for x_{1} and \frac{-5+\sqrt{1855}}{61} for x_{2}.
-10m-61m^{2}+30
Combine m and -11m to get -10m.