Solve for n
n=im+\left(10-i\right)
Solve for m
m=1+10i-in
Share
Copied to clipboard
m-1+ni=10i
Multiply 3+i and 1+3i to get 10i.
-1+ni=10i-m
Subtract m from both sides.
ni=10i-m+1
Add 1 to both sides.
in=1+10i-m
The equation is in standard form.
\frac{in}{i}=\frac{1+10i-m}{i}
Divide both sides by i.
n=\frac{1+10i-m}{i}
Dividing by i undoes the multiplication by i.
n=im+\left(10-i\right)
Divide 1+10i-m by i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}