Solve for m
m=\frac{x-12}{2}
Solve for x
x=2\left(m+6\right)
Graph
Share
Copied to clipboard
6m-2x+6=1x-30
Multiply both sides of the equation by 6, the least common multiple of 3,6.
6m+6=1x-30+2x
Add 2x to both sides.
6m+6=3x-30
Combine 1x and 2x to get 3x.
6m=3x-30-6
Subtract 6 from both sides.
6m=3x-36
Subtract 6 from -30 to get -36.
\frac{6m}{6}=\frac{3x-36}{6}
Divide both sides by 6.
m=\frac{3x-36}{6}
Dividing by 6 undoes the multiplication by 6.
m=\frac{x}{2}-6
Divide -36+3x by 6.
6m-2x+6=1x-30
Multiply both sides of the equation by 6, the least common multiple of 3,6.
6m-2x+6-x=-30
Subtract 1x from both sides.
6m-3x+6=-30
Combine -2x and -x to get -3x.
-3x+6=-30-6m
Subtract 6m from both sides.
-3x=-30-6m-6
Subtract 6 from both sides.
-3x=-36-6m
Subtract 6 from -30 to get -36.
-3x=-6m-36
The equation is in standard form.
\frac{-3x}{-3}=\frac{-6m-36}{-3}
Divide both sides by -3.
x=\frac{-6m-36}{-3}
Dividing by -3 undoes the multiplication by -3.
x=2m+12
Divide -36-6m by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}