Evaluate
2\left(m-7\right)\left(m-1\right)
Expand
2m^{2}-16m+14
Share
Copied to clipboard
m^{2}-7m-\left(7-m\right)\left(m-2\right)
Use the distributive property to multiply m by m-7.
m^{2}-7m-\left(7m-14-m^{2}+2m\right)
Apply the distributive property by multiplying each term of 7-m by each term of m-2.
m^{2}-7m-\left(9m-14-m^{2}\right)
Combine 7m and 2m to get 9m.
m^{2}-7m-9m-\left(-14\right)-\left(-m^{2}\right)
To find the opposite of 9m-14-m^{2}, find the opposite of each term.
m^{2}-7m-9m+14-\left(-m^{2}\right)
The opposite of -14 is 14.
m^{2}-7m-9m+14+m^{2}
The opposite of -m^{2} is m^{2}.
m^{2}-16m+14+m^{2}
Combine -7m and -9m to get -16m.
2m^{2}-16m+14
Combine m^{2} and m^{2} to get 2m^{2}.
m^{2}-7m-\left(7-m\right)\left(m-2\right)
Use the distributive property to multiply m by m-7.
m^{2}-7m-\left(7m-14-m^{2}+2m\right)
Apply the distributive property by multiplying each term of 7-m by each term of m-2.
m^{2}-7m-\left(9m-14-m^{2}\right)
Combine 7m and 2m to get 9m.
m^{2}-7m-9m-\left(-14\right)-\left(-m^{2}\right)
To find the opposite of 9m-14-m^{2}, find the opposite of each term.
m^{2}-7m-9m+14-\left(-m^{2}\right)
The opposite of -14 is 14.
m^{2}-7m-9m+14+m^{2}
The opposite of -m^{2} is m^{2}.
m^{2}-16m+14+m^{2}
Combine -7m and -9m to get -16m.
2m^{2}-16m+14
Combine m^{2} and m^{2} to get 2m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}