Factor
\left(m-1\right)\left(m-2\right)^{3}
Evaluate
\left(m-1\right)\left(m-2\right)^{3}
Share
Copied to clipboard
\left(m-2\right)\left(m^{3}-5m^{2}+8m-4\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 8 and q divides the leading coefficient 1. One such root is 2. Factor the polynomial by dividing it by m-2.
\left(m-2\right)\left(m^{2}-3m+2\right)
Consider m^{3}-5m^{2}+8m-4. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -4 and q divides the leading coefficient 1. One such root is 2. Factor the polynomial by dividing it by m-2.
a+b=-3 ab=1\times 2=2
Consider m^{2}-3m+2. Factor the expression by grouping. First, the expression needs to be rewritten as m^{2}+am+bm+2. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(m^{2}-2m\right)+\left(-m+2\right)
Rewrite m^{2}-3m+2 as \left(m^{2}-2m\right)+\left(-m+2\right).
m\left(m-2\right)-\left(m-2\right)
Factor out m in the first and -1 in the second group.
\left(m-2\right)\left(m-1\right)
Factor out common term m-2 by using distributive property.
\left(m-1\right)\left(m-2\right)^{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}