Factor
m\left(m-10\right)\left(m-3\right)
Evaluate
m\left(m-10\right)\left(m-3\right)
Share
Copied to clipboard
m\left(m^{2}-13m+30\right)
Factor out m.
a+b=-13 ab=1\times 30=30
Consider m^{2}-13m+30. Factor the expression by grouping. First, the expression needs to be rewritten as m^{2}+am+bm+30. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-10 b=-3
The solution is the pair that gives sum -13.
\left(m^{2}-10m\right)+\left(-3m+30\right)
Rewrite m^{2}-13m+30 as \left(m^{2}-10m\right)+\left(-3m+30\right).
m\left(m-10\right)-3\left(m-10\right)
Factor out m in the first and -3 in the second group.
\left(m-10\right)\left(m-3\right)
Factor out common term m-10 by using distributive property.
m\left(m-10\right)\left(m-3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}