Solve for x (complex solution)
\left\{\begin{matrix}\\x=m+1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=\frac{1+\sqrt{3}i}{2}\text{ or }m=\frac{-\sqrt{3}i+1}{2}\end{matrix}\right.
Solve for x
x=m+1
Solve for m (complex solution)
m=\frac{-\sqrt{3}i+1}{2}\approx 0.5-0.866025404i
m=\frac{1+\sqrt{3}i}{2}\approx 0.5+0.866025404i
m=x-1
Solve for m
m=x-1
Graph
Share
Copied to clipboard
m^{2}x+x-mx=m^{3}+1
Subtract mx from both sides.
\left(m^{2}+1-m\right)x=m^{3}+1
Combine all terms containing x.
\left(m^{2}-m+1\right)x=m^{3}+1
The equation is in standard form.
\frac{\left(m^{2}-m+1\right)x}{m^{2}-m+1}=\frac{m^{3}+1}{m^{2}-m+1}
Divide both sides by 1-m+m^{2}.
x=\frac{m^{3}+1}{m^{2}-m+1}
Dividing by 1-m+m^{2} undoes the multiplication by 1-m+m^{2}.
x=m+1
Divide m^{3}+1 by 1-m+m^{2}.
m^{2}x+x-mx=m^{3}+1
Subtract mx from both sides.
\left(m^{2}+1-m\right)x=m^{3}+1
Combine all terms containing x.
\left(m^{2}-m+1\right)x=m^{3}+1
The equation is in standard form.
\frac{\left(m^{2}-m+1\right)x}{m^{2}-m+1}=\frac{m^{3}+1}{m^{2}-m+1}
Divide both sides by 1-m+m^{2}.
x=\frac{m^{3}+1}{m^{2}-m+1}
Dividing by 1-m+m^{2} undoes the multiplication by 1-m+m^{2}.
x=m+1
Divide m^{3}+1 by 1-m+m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}