Solve for m
m = \frac{\sqrt{8065} + 1}{2} \approx 45.402672526
m=\frac{1-\sqrt{8065}}{2}\approx -44.402672526
Share
Copied to clipboard
m^{2}-m+1=2017
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m^{2}-m+1-2017=2017-2017
Subtract 2017 from both sides of the equation.
m^{2}-m+1-2017=0
Subtracting 2017 from itself leaves 0.
m^{2}-m-2016=0
Subtract 2017 from 1.
m=\frac{-\left(-1\right)±\sqrt{1-4\left(-2016\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -2016 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±\sqrt{1+8064}}{2}
Multiply -4 times -2016.
m=\frac{-\left(-1\right)±\sqrt{8065}}{2}
Add 1 to 8064.
m=\frac{1±\sqrt{8065}}{2}
The opposite of -1 is 1.
m=\frac{\sqrt{8065}+1}{2}
Now solve the equation m=\frac{1±\sqrt{8065}}{2} when ± is plus. Add 1 to \sqrt{8065}.
m=\frac{1-\sqrt{8065}}{2}
Now solve the equation m=\frac{1±\sqrt{8065}}{2} when ± is minus. Subtract \sqrt{8065} from 1.
m=\frac{\sqrt{8065}+1}{2} m=\frac{1-\sqrt{8065}}{2}
The equation is now solved.
m^{2}-m+1=2017
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-m+1-1=2017-1
Subtract 1 from both sides of the equation.
m^{2}-m=2017-1
Subtracting 1 from itself leaves 0.
m^{2}-m=2016
Subtract 1 from 2017.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=2016+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=2016+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{8065}{4}
Add 2016 to \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{8065}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{8065}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{\sqrt{8065}}{2} m-\frac{1}{2}=-\frac{\sqrt{8065}}{2}
Simplify.
m=\frac{\sqrt{8065}+1}{2} m=\frac{1-\sqrt{8065}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}